Auto Classes¶
The Auto Classes automatically retrieves relevant transformers models, including the weights, configurations, and vocabularies, based on their names or paths. This feature allows users to easily load and use models without needing to know their exact model architecture.
Key Classes¶
RBLNAutoConfig
: Configuration class for auto models.RBLNAutoModel
: The auto model for running transformers models supported on RBLN NPU.RBLNAutoModelForCTC
: The auto model class for running Connectionist Temporal Classification (CTC) head models on RBLN NPU.RBLNAutoModelForCausalLM
: The auto model class for running Casual Language Models on RBLN NPU.RBLNAutoModelForSeq2SeqLM
: The auto model class for running Sequence-to-Sequence Language Models on RBLN NPU.RBLNAutoModelForDepthEstimation
: The auto model class for running Sequence-to-Depth Estimation Models on RBLN NPU.RBLNAutoModelForSequenceClassification
: The auto model class for running Sequence Classification Models on RBLN NPU.RBLNAutoModelForSpeechSeq2Seq
: The auto model class for running SpeechSequence-to-Sequence Generation Models on RBLN NPU.RBLNAutoModelForVision2Seq
: The auto model class for running Vision-to-Sequence Generation Models on RBLN NPU.RBLNAutoModelForImageTextToText
: The auto model class for running Image-Text-To-Text Generation Models on RBLN NPU.RBLNAutoModelForMaskedLM
: The auto model class for running Masked Lanuage Models on RBLN NPU.RBLNAutoModelForAudioClassification
: The auto model class for running Audio Classification Models on RBLN NPU.RBLNAutoModelForImageClassification
: The auto model class for running Image Classification Models on RBLN NPU.RBLNAutoModelForQuestionAnswering
: The auto model class for running Question Answering Models on RBLN NPU.RBLNAutoModelForTextEncoding
: The auto model class for running Text Encoding Models on RBLN NPU.
Register Custom Classes¶
The AutoClass
has a method register()
that lets you extend it with your own custom classes. For example, if you've created a custom model called RBLNMistralNeMoForTextUpsampler
, along with its configuration class RBLNMistralNeMoForTextUpsamplerConfig
, you can add them to the AutoClass
so they can be automatically loaded.
- Compile
- Inference
Supported Models¶
- CTC
Model | Model Architecture | AutoClass |
---|---|---|
Wav2Vec2 | Wav2Vec2ForCTC | RBLNAutoModelForCTC |
- CausalLM
Model | Model Architecture | AutoClass |
---|---|---|
DeepSeek-R1-Distill-Llama-8b | LlamaForCausalLM | RBLNAutoModelForCausalLM |
DeepSeek-R1-Distill-Llama-70b | LlamaForCausalLM | RBLNAutoModelForCausalLM |
DeepSeek-R1-Distill-Qwen-1.5b | Qwen2ForCausalLM | RBLNAutoModelForCausalLM |
DeepSeek-R1-Distill-Qwen-7b | Qwen2ForCausalLM | RBLNAutoModelForCausalLM |
DeepSeek-R1-Distill-Qwen-14b | Qwen2ForCausalLM | RBLNAutoModelForCausalLM |
DeepSeek-R1-Distill-Qwen-32b | Qwen2ForCausalLM | RBLNAutoModelForCausalLM |
Llama3.3-70b | LlamaForCausalLM | RBLNAutoModelForCausalLM |
Llama3.2-3b | LlamaForCausalLM | RBLNAutoModelForCausalLM |
Llama3.1-70b | LlamaForCausalLM | RBLNAutoModelForCausalLM |
Llama3.1-8b | LlamaForCausalLM | RBLNAutoModelForCausalLM |
Llama3-8b | LlamaForCausalLM | RBLNAutoModelForCausalLM |
Llama3-8b + LoRA | LlamaForCausalLM | RBLNAutoModelForCausalLM |
Llama2-7b | LlamaForCausalLM | RBLNAutoModelForCausalLM |
Llama2-13b | LlamaForCausalLM | RBLNAutoModelForCausalLM |
Phi-2 | PhiForCausalLM | RBLNAutoModelForCausalLM |
Gemma-7b | GemmaForCausalLM | RBLNAutoModelForCausalLM |
Gemma-2b | GemmaForCausalLM | RBLNAutoModelForCausalLM |
OPT-2.7b | OPTForCausalLM | RBLNAutoModelForCausalLM |
Mistral-7b | MistralForCausalLM | RBLNAutoModelForCausalLM |
A.X-4.0-Light | Qwen2ForCausalLM | RBLNAutoModelForCausalLM |
Qwen2-7b | Qwen2ForCausalLM | RBLNAutoModelForCausalLM |
Qwen2.5-0.5b | Qwen2ForCausalLM | RBLNAutoModelForCausalLM |
Qwen2.5-1.5b | Qwen2ForCausalLM | RBLNAutoModelForCausalLM |
Qwen2.5-3b | Qwen2ForCausalLM | RBLNAutoModelForCausalLM |
Qwen2.5-7b | Qwen2ForCausalLM | RBLNAutoModelForCausalLM |
Qwen2.5-14b | Qwen2ForCausalLM | RBLNAutoModelForCausalLM |
Qwen2.5-32b | Qwen2ForCausalLM | RBLNAutoModelForCausalLM |
Qwen2.5-72b | Qwen2ForCausalLM | RBLNAutoModelForCausalLM |
Qwen3-0.6b | Qwen3ForCausalLM | RBLNAutoModelForCausalLM |
Qwen3-1.7b | Qwen3ForCausalLM | RBLNAutoModelForCausalLM |
Qwen3-4b | Qwen3ForCausalLM | RBLNAutoModelForCausalLM |
Qwen3-8b | Qwen3ForCausalLM | RBLNAutoModelForCausalLM |
Qwen3-32b | Qwen3ForCausalLM | RBLNAutoModelForCausalLM |
Midm-2.0-Mini | LlamaForCausalLM | RBLNAutoModelForCausalLM |
Midm-2.0-Base | LlamaForCausalLM | RBLNAutoModelForCausalLM |
Salamandra-7b | LlamaForCausalLM | RBLNAutoModelForCausalLM |
KONI-Llama3.1-8b | LlamaForCausalLM | RBLNAutoModelForCausalLM |
EXAONE-3.0-7.8b | ExaoneForCausalLM | RBLNAutoModelForCausalLM |
EXAONE-3.5-2.4b | ExaoneForCausalLM | RBLNAutoModelForCausalLM |
EXAONE-3.5-7.8b | ExaoneForCausalLM | RBLNAutoModelForCausalLM |
EXAONE-3.5-32b | ExaoneForCausalLM | RBLNAutoModelForCausalLM |
GPT2 | GPT2LMHeadModel | RBLNAutoModelForCausalLM |
GPT2-medium | GPT2LMHeadModel | RBLNAutoModelForCausalLM |
GPT2-large | GPT2LMHeadModel | RBLNAutoModelForCausalLM |
GPT2-xl | GPT2LMHeadModel | RBLNAutoModelForCausalLM |
OPT-6.7b | OPTForCausalLM | RBLNAutoModelForCausalLM |
SOLAR-10.7b | LlamaForCausalLM | RBLNAutoModelForCausalLM |
EEVE-Korean-10.8b | LlamaForCausalLM | RBLNAutoModelForCausalLM |
- Seq2SeqLM
Model | Model Architecture | AutoClass |
---|---|---|
T5-11b | T5ForConditionalGeneration | RBLNAutoModelForSeq2SeqLM |
T5-small | T5ForConditionalGeneration | RBLNAutoModelForSeq2SeqLM |
T5-base | T5ForConditionalGeneration | RBLNAutoModelForSeq2SeqLM |
T5-large | T5ForConditionalGeneration | RBLNAutoModelForSeq2SeqLM |
T5-3b | T5ForConditionalGeneration | RBLNAutoModelForSeq2SeqLM |
BART-base | BartForConditionalGeneration | RBLNAutoModelForSeq2SeqLM |
BART-large | BartForConditionalGeneration | RBLNAutoModelForSeq2SeqLM |
KoBART-base | BartForConditionalGeneration | RBLNAutoModelForSeq2SeqLM |
Pegasus | PegasusForConditionalGeneration | RBLNAutoModelForSeq2SeqLM |
- DepthEsitmation
Model | Model Architecture | AutoClass |
---|---|---|
Depth-Anything-V2-Small | DepthAnythingForDepthEstimation | RBLNAutoModelForDepthEstimation |
Depth-Anything-V2-Base | DepthAnythingForDepthEstimation | RBLNAutoModelForDepthEstimation |
Depth-Anything-V2-Large | DepthAnythingForDepthEstimation | RBLNAutoModelForDepthEstimation |
DPT-large | DPTForDepthEstimation | RBLNAutoModelForDepthEstimation |
- SequenceClassification
Model | Model Architecture | AutoClass |
---|---|---|
RoBERTa | RobertaForSequenceClassification | RBLNAutoModelForSequenceClassification |
BGE-Reranker-V2-M3 | XLMRobertaForSequenceClassification | RBLNAutoModelForSequenceClassification |
BGE-Reranker-Base | XLMRobertaForSequenceClassification | RBLNAutoModelForSequenceClassification |
BGE-Reranker-Large | XLMRobertaForSequenceClassification | RBLNAutoModelForSequenceClassification |
Ko-Reranker | XLMRobertaForSequenceClassification | RBLNAutoModelForSequenceClassification |
- SpeechSeq2Seq
Model | Model Architecture | AutoClass |
---|---|---|
Whisper-tiny | WhisperForConditionalGeneration | RBLNAutoModelForSpeechSeq2Seq |
Whisper-base | WhisperForConditionalGeneration | RBLNAutoModelForSpeechSeq2Seq |
Whisper-small | WhisperForConditionalGeneration | RBLNAutoModelForSpeechSeq2Seq |
Whisper-medium | WhisperForConditionalGeneration | RBLNAutoModelForSpeechSeq2Seq |
Whisper-large-v3 | WhisperForConditionalGeneration | RBLNAutoModelForSpeechSeq2Seq |
Whisper-large-v3-turbo | WhisperForConditionalGeneration | RBLNAutoModelForSpeechSeq2Seq |
- Vision2Seq
Model | Model Architecture | AutoClass |
---|---|---|
Qwen2.5-VL-7b | Qwen2_5_VLForConditionalGeneration | RBLNAutoModelForVision2Seq |
Idefics3-8B-Llama3 | Idefics3ForConditionalGeneration | RBLNAutoModelForVision2Seq |
Llava-v1.5-7b | LlavaForConditionalGeneration | RBLNAutoModelForVision2Seq |
Llava-v1.6-mistral-7b | LlavaNextForConditionalGeneration | RBLNAutoModelForVision2Seq |
Pixtral-12b | LlavaForConditionalGeneration | RBLNAutoModelForVision2Seq |
BLIP2-6.7b | RBLNBlip2ForConditionalGeneration | RBLNAutoModelForVision2Seq |
BLIP2-2.7b | RBLNBlip2ForConditionalGeneration | RBLNAutoModelForVision2Seq |
- ImageTextToText
Model | Model Architecture | AutoClass |
---|---|---|
Gemma3-4b | Gemma3ForConditionalGeneration | RBLNAutoModelForImageTextToText |
Gemma3-12b | Gemma3ForConditionalGeneration | RBLNAutoModelForImageTextToText |
Gemma3-27b | Gemma3ForConditionalGeneration | RBLNAutoModelForImageTextToText |
Qwen2.5-VL-7b | Qwen2_5_VLForConditionalGeneration | RBLNAutoModelForImageTextToText |
Idefics3-8B-Llama3 | Idefics3ForConditionalGeneration | RBLNAutoModelForImageTextToText |
Llava-v1.5-7b | LlavaForConditionalGeneration | RBLNAutoModelForImageTextToText |
Llava-v1.6-mistral-7b | LlavaNextForConditionalGeneration | RBLNAutoModelForImageTextToText |
Pixtral-12b | LlavaForConditionalGeneration | RBLNAutoModelForImageTextToText |
BLIP2-6.7b | RBLNBlip2ForConditionalGeneration | RBLNAutoModelForImageTextToText |
BLIP2-2.7b | RBLNBlip2ForConditionalGeneration | RBLNAutoModelForImageTextToText |
- MaskedLM
Model | Model Architecture | AutoClass |
---|---|---|
BERT-base | BertForMaskedLM | RBLNAutoModelForMaskedLM |
BERT-large | BertForMaskedLM | RBLNAutoModelForMaskedLM |
SecureBERT | RobertaForMaskedLM | RBLNAutoModelForMaskedLM |
- AudioClassification
Model | Model Architecture | AutoClass |
---|---|---|
Audio-Spectogram-Transformer | ASTForAudioClassification | RBLNAutoModelForAudioClassification |
- ImageClassification
Model | Model Architecture | AutoClass |
---|---|---|
ViT-large | ViTForImageClassification | RBLNAutoModelForImageClassification |
ResNet50 | ResNetForImageClassification | RBLNAutoModelForImageClassification |
- QuestionAnswering
Model | Model Architecture | AutoClass |
---|---|---|
BERT-base | BertForQuestionAnswering | RBLNAutoModelForQuestionAnswering |
BERT-large | BertForQuestionAnswering | RBLNAutoModelForQuestionAnswering |
- TextEncoding
Model | Model Architecture | AutoClass |
---|---|---|
T5-Enc-11b | T5EncoderModel | RBLNAutoModelForTextEncoding |
Qwen3-Embedding-4b | Qwen3Model | RBLNAutoModelForTextEncoding |
Qwen3-Embedding-0.6b | Qwen3Model | RBLNAutoModelForTextEncoding |
E5-base-4K | BertModel | RBLNAutoModelForTextEncoding |
KR-SBERT-V40K-klueNLI-augSTS | BertModel | RBLNAutoModelForTextEncoding |
BGE-Small-EN-v1.5 | RBLNBertModel | RBLNAutoModelForTextEncoding |
BGE-Large-EN-v1.5 | RBLNBertModel | RBLNAutoModelForTextEncoding |
BGE-M3 | XLMRobertaModel | RBLNAutoModelForTextEncoding |
API Reference¶
Classes¶
RBLNAutoConfig
¶
Functions¶
register(config, exist_ok=False)
staticmethod
¶
Register a new configuration for this class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config
|
[`RBLNModelConfig`]
|
The config to register. |
required |
exist_ok
|
bool
|
Whether to allow registering an already registered model. |
False
|
load(path, passed_rbln_config=None, kwargs={}, return_unused_kwargs=False)
staticmethod
¶
Load RBLNModelConfig from a path.
Class name is automatically inferred from the rbln_config.json
file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path
|
str
|
Path to the RBLNModelConfig. |
required |
passed_rbln_config
|
Optional[RBLNModelConfig]
|
RBLNModelConfig to pass its runtime options. |
None
|
Returns:
Name | Type | Description |
---|---|---|
RBLNModelConfig |
Union[RBLNModelConfig, Tuple[RBLNModelConfig, Dict[str, Any]]]
|
The loaded RBLNModelConfig. |
Classes¶
RBLNAutoModel
¶
Bases: _BaseAutoModelClass
Automatically detect all supported transformers models.
Functions¶
from_pretrained(model_id, *args, **kwargs)
classmethod
¶
The from_pretrained()
function is utilized in its standard form as in the HuggingFace transformers library.
User can use this function to load a pre-trained model from the HuggingFace library and convert it to a RBLN model to be run on RBLN NPUs.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_id
|
The model id of the pre-trained model to be loaded. It can be downloaded from the HuggingFace model hub or a local path, or a model id of a compiled model using the RBLN Compiler. |
required | |
args
|
Variable argument list. The format matches the original retrieved autoclass definition. |
()
|
|
kwargs
|
Additional keyword arguments. Arguments with the prefix 'rbln_' are passed to rbln_config, while the remaining arguments are passed to the HuggingFace library. |
{}
|
Returns:
Type | Description |
---|---|
A RBLN model instance ready for inference on RBLN NPU devices. |
register(rbln_cls, exist_ok=False)
staticmethod
¶
Register a new RBLN model class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
rbln_cls
|
Type[RBLNBaseModel]
|
The RBLN model class to register. |
required |
exist_ok
|
bool
|
Whether to allow registering an already registered model. |
False
|
RBLNAutoModelForCTC
¶
Bases: _BaseAutoModelClass
Automatically detect Connectionist Temporal Classification (CTC) head Models.
Functions¶
from_pretrained(model_id, *args, **kwargs)
classmethod
¶
The from_pretrained()
function is utilized in its standard form as in the HuggingFace transformers library.
User can use this function to load a pre-trained model from the HuggingFace library and convert it to a RBLN model to be run on RBLN NPUs.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_id
|
The model id of the pre-trained model to be loaded. It can be downloaded from the HuggingFace model hub or a local path, or a model id of a compiled model using the RBLN Compiler. |
required | |
args
|
Variable argument list. The format matches the original retrieved autoclass definition. |
()
|
|
kwargs
|
Additional keyword arguments. Arguments with the prefix 'rbln_' are passed to rbln_config, while the remaining arguments are passed to the HuggingFace library. |
{}
|
Returns:
Type | Description |
---|---|
A RBLN model instance ready for inference on RBLN NPU devices. |
register(rbln_cls, exist_ok=False)
staticmethod
¶
Register a new RBLN model class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
rbln_cls
|
Type[RBLNBaseModel]
|
The RBLN model class to register. |
required |
exist_ok
|
bool
|
Whether to allow registering an already registered model. |
False
|
RBLNAutoModelForCausalLM
¶
Bases: _BaseAutoModelClass
Automatically detect Casual Language Models.
Functions¶
from_pretrained(model_id, *args, **kwargs)
classmethod
¶
The from_pretrained()
function is utilized in its standard form as in the HuggingFace transformers library.
User can use this function to load a pre-trained model from the HuggingFace library and convert it to a RBLN model to be run on RBLN NPUs.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_id
|
The model id of the pre-trained model to be loaded. It can be downloaded from the HuggingFace model hub or a local path, or a model id of a compiled model using the RBLN Compiler. |
required | |
args
|
Variable argument list. The format matches the original retrieved autoclass definition. |
()
|
|
kwargs
|
Additional keyword arguments. Arguments with the prefix 'rbln_' are passed to rbln_config, while the remaining arguments are passed to the HuggingFace library. |
{}
|
Returns:
Type | Description |
---|---|
A RBLN model instance ready for inference on RBLN NPU devices. |
register(rbln_cls, exist_ok=False)
staticmethod
¶
Register a new RBLN model class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
rbln_cls
|
Type[RBLNBaseModel]
|
The RBLN model class to register. |
required |
exist_ok
|
bool
|
Whether to allow registering an already registered model. |
False
|
RBLNAutoModelForSeq2SeqLM
¶
Bases: _BaseAutoModelClass
Automatically detect Sequence to Sequence Language Models.
Functions¶
from_pretrained(model_id, *args, **kwargs)
classmethod
¶
The from_pretrained()
function is utilized in its standard form as in the HuggingFace transformers library.
User can use this function to load a pre-trained model from the HuggingFace library and convert it to a RBLN model to be run on RBLN NPUs.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_id
|
The model id of the pre-trained model to be loaded. It can be downloaded from the HuggingFace model hub or a local path, or a model id of a compiled model using the RBLN Compiler. |
required | |
args
|
Variable argument list. The format matches the original retrieved autoclass definition. |
()
|
|
kwargs
|
Additional keyword arguments. Arguments with the prefix 'rbln_' are passed to rbln_config, while the remaining arguments are passed to the HuggingFace library. |
{}
|
Returns:
Type | Description |
---|---|
A RBLN model instance ready for inference on RBLN NPU devices. |
register(rbln_cls, exist_ok=False)
staticmethod
¶
Register a new RBLN model class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
rbln_cls
|
Type[RBLNBaseModel]
|
The RBLN model class to register. |
required |
exist_ok
|
bool
|
Whether to allow registering an already registered model. |
False
|
RBLNAutoModelForSpeechSeq2Seq
¶
Bases: _BaseAutoModelClass
Automatically detect Sequence to Sequence Generation Models.
Functions¶
from_pretrained(model_id, *args, **kwargs)
classmethod
¶
The from_pretrained()
function is utilized in its standard form as in the HuggingFace transformers library.
User can use this function to load a pre-trained model from the HuggingFace library and convert it to a RBLN model to be run on RBLN NPUs.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_id
|
The model id of the pre-trained model to be loaded. It can be downloaded from the HuggingFace model hub or a local path, or a model id of a compiled model using the RBLN Compiler. |
required | |
args
|
Variable argument list. The format matches the original retrieved autoclass definition. |
()
|
|
kwargs
|
Additional keyword arguments. Arguments with the prefix 'rbln_' are passed to rbln_config, while the remaining arguments are passed to the HuggingFace library. |
{}
|
Returns:
Type | Description |
---|---|
A RBLN model instance ready for inference on RBLN NPU devices. |
register(rbln_cls, exist_ok=False)
staticmethod
¶
Register a new RBLN model class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
rbln_cls
|
Type[RBLNBaseModel]
|
The RBLN model class to register. |
required |
exist_ok
|
bool
|
Whether to allow registering an already registered model. |
False
|
RBLNAutoModelForDepthEstimation
¶
Bases: _BaseAutoModelClass
Automatically detect Speech Sequence to Sequence Language Models.
Functions¶
from_pretrained(model_id, *args, **kwargs)
classmethod
¶
The from_pretrained()
function is utilized in its standard form as in the HuggingFace transformers library.
User can use this function to load a pre-trained model from the HuggingFace library and convert it to a RBLN model to be run on RBLN NPUs.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_id
|
The model id of the pre-trained model to be loaded. It can be downloaded from the HuggingFace model hub or a local path, or a model id of a compiled model using the RBLN Compiler. |
required | |
args
|
Variable argument list. The format matches the original retrieved autoclass definition. |
()
|
|
kwargs
|
Additional keyword arguments. Arguments with the prefix 'rbln_' are passed to rbln_config, while the remaining arguments are passed to the HuggingFace library. |
{}
|
Returns:
Type | Description |
---|---|
A RBLN model instance ready for inference on RBLN NPU devices. |
register(rbln_cls, exist_ok=False)
staticmethod
¶
Register a new RBLN model class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
rbln_cls
|
Type[RBLNBaseModel]
|
The RBLN model class to register. |
required |
exist_ok
|
bool
|
Whether to allow registering an already registered model. |
False
|
RBLNAutoModelForSequenceClassification
¶
Bases: _BaseAutoModelClass
Automatically detect Sequence Classification Models.
Functions¶
from_pretrained(model_id, *args, **kwargs)
classmethod
¶
The from_pretrained()
function is utilized in its standard form as in the HuggingFace transformers library.
User can use this function to load a pre-trained model from the HuggingFace library and convert it to a RBLN model to be run on RBLN NPUs.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_id
|
The model id of the pre-trained model to be loaded. It can be downloaded from the HuggingFace model hub or a local path, or a model id of a compiled model using the RBLN Compiler. |
required | |
args
|
Variable argument list. The format matches the original retrieved autoclass definition. |
()
|
|
kwargs
|
Additional keyword arguments. Arguments with the prefix 'rbln_' are passed to rbln_config, while the remaining arguments are passed to the HuggingFace library. |
{}
|
Returns:
Type | Description |
---|---|
A RBLN model instance ready for inference on RBLN NPU devices. |
register(rbln_cls, exist_ok=False)
staticmethod
¶
Register a new RBLN model class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
rbln_cls
|
Type[RBLNBaseModel]
|
The RBLN model class to register. |
required |
exist_ok
|
bool
|
Whether to allow registering an already registered model. |
False
|
RBLNAutoModelForVision2Seq
¶
Bases: _BaseAutoModelClass
Automatically detect Vision to Sequence Generation Models.
Functions¶
from_pretrained(model_id, *args, **kwargs)
classmethod
¶
The from_pretrained()
function is utilized in its standard form as in the HuggingFace transformers library.
User can use this function to load a pre-trained model from the HuggingFace library and convert it to a RBLN model to be run on RBLN NPUs.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_id
|
The model id of the pre-trained model to be loaded. It can be downloaded from the HuggingFace model hub or a local path, or a model id of a compiled model using the RBLN Compiler. |
required | |
args
|
Variable argument list. The format matches the original retrieved autoclass definition. |
()
|
|
kwargs
|
Additional keyword arguments. Arguments with the prefix 'rbln_' are passed to rbln_config, while the remaining arguments are passed to the HuggingFace library. |
{}
|
Returns:
Type | Description |
---|---|
A RBLN model instance ready for inference on RBLN NPU devices. |
register(rbln_cls, exist_ok=False)
staticmethod
¶
Register a new RBLN model class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
rbln_cls
|
Type[RBLNBaseModel]
|
The RBLN model class to register. |
required |
exist_ok
|
bool
|
Whether to allow registering an already registered model. |
False
|
RBLNAutoModelForImageTextToText
¶
Bases: _BaseAutoModelClass
Automatically detect Image and Text to Text Generation Models.
Functions¶
from_pretrained(model_id, *args, **kwargs)
classmethod
¶
The from_pretrained()
function is utilized in its standard form as in the HuggingFace transformers library.
User can use this function to load a pre-trained model from the HuggingFace library and convert it to a RBLN model to be run on RBLN NPUs.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_id
|
The model id of the pre-trained model to be loaded. It can be downloaded from the HuggingFace model hub or a local path, or a model id of a compiled model using the RBLN Compiler. |
required | |
args
|
Variable argument list. The format matches the original retrieved autoclass definition. |
()
|
|
kwargs
|
Additional keyword arguments. Arguments with the prefix 'rbln_' are passed to rbln_config, while the remaining arguments are passed to the HuggingFace library. |
{}
|
Returns:
Type | Description |
---|---|
A RBLN model instance ready for inference on RBLN NPU devices. |
register(rbln_cls, exist_ok=False)
staticmethod
¶
Register a new RBLN model class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
rbln_cls
|
Type[RBLNBaseModel]
|
The RBLN model class to register. |
required |
exist_ok
|
bool
|
Whether to allow registering an already registered model. |
False
|
RBLNAutoModelForMaskedLM
¶
Bases: _BaseAutoModelClass
Automatically detect Masked Lanuage Models.
Functions¶
from_pretrained(model_id, *args, **kwargs)
classmethod
¶
The from_pretrained()
function is utilized in its standard form as in the HuggingFace transformers library.
User can use this function to load a pre-trained model from the HuggingFace library and convert it to a RBLN model to be run on RBLN NPUs.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_id
|
The model id of the pre-trained model to be loaded. It can be downloaded from the HuggingFace model hub or a local path, or a model id of a compiled model using the RBLN Compiler. |
required | |
args
|
Variable argument list. The format matches the original retrieved autoclass definition. |
()
|
|
kwargs
|
Additional keyword arguments. Arguments with the prefix 'rbln_' are passed to rbln_config, while the remaining arguments are passed to the HuggingFace library. |
{}
|
Returns:
Type | Description |
---|---|
A RBLN model instance ready for inference on RBLN NPU devices. |
register(rbln_cls, exist_ok=False)
staticmethod
¶
Register a new RBLN model class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
rbln_cls
|
Type[RBLNBaseModel]
|
The RBLN model class to register. |
required |
exist_ok
|
bool
|
Whether to allow registering an already registered model. |
False
|
RBLNAutoModelForAudioClassification
¶
Bases: _BaseAutoModelClass
Automatically detect Audio Classification Models.
Functions¶
from_pretrained(model_id, *args, **kwargs)
classmethod
¶
The from_pretrained()
function is utilized in its standard form as in the HuggingFace transformers library.
User can use this function to load a pre-trained model from the HuggingFace library and convert it to a RBLN model to be run on RBLN NPUs.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_id
|
The model id of the pre-trained model to be loaded. It can be downloaded from the HuggingFace model hub or a local path, or a model id of a compiled model using the RBLN Compiler. |
required | |
args
|
Variable argument list. The format matches the original retrieved autoclass definition. |
()
|
|
kwargs
|
Additional keyword arguments. Arguments with the prefix 'rbln_' are passed to rbln_config, while the remaining arguments are passed to the HuggingFace library. |
{}
|
Returns:
Type | Description |
---|---|
A RBLN model instance ready for inference on RBLN NPU devices. |
register(rbln_cls, exist_ok=False)
staticmethod
¶
Register a new RBLN model class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
rbln_cls
|
Type[RBLNBaseModel]
|
The RBLN model class to register. |
required |
exist_ok
|
bool
|
Whether to allow registering an already registered model. |
False
|
RBLNAutoModelForImageClassification
¶
Bases: _BaseAutoModelClass
Automatically detect Image Classification Models.
Functions¶
from_pretrained(model_id, *args, **kwargs)
classmethod
¶
The from_pretrained()
function is utilized in its standard form as in the HuggingFace transformers library.
User can use this function to load a pre-trained model from the HuggingFace library and convert it to a RBLN model to be run on RBLN NPUs.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_id
|
The model id of the pre-trained model to be loaded. It can be downloaded from the HuggingFace model hub or a local path, or a model id of a compiled model using the RBLN Compiler. |
required | |
args
|
Variable argument list. The format matches the original retrieved autoclass definition. |
()
|
|
kwargs
|
Additional keyword arguments. Arguments with the prefix 'rbln_' are passed to rbln_config, while the remaining arguments are passed to the HuggingFace library. |
{}
|
Returns:
Type | Description |
---|---|
A RBLN model instance ready for inference on RBLN NPU devices. |
register(rbln_cls, exist_ok=False)
staticmethod
¶
Register a new RBLN model class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
rbln_cls
|
Type[RBLNBaseModel]
|
The RBLN model class to register. |
required |
exist_ok
|
bool
|
Whether to allow registering an already registered model. |
False
|
RBLNAutoModelForQuestionAnswering
¶
Bases: _BaseAutoModelClass
Automatically detect Question Answering Models.
Functions¶
from_pretrained(model_id, *args, **kwargs)
classmethod
¶
The from_pretrained()
function is utilized in its standard form as in the HuggingFace transformers library.
User can use this function to load a pre-trained model from the HuggingFace library and convert it to a RBLN model to be run on RBLN NPUs.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_id
|
The model id of the pre-trained model to be loaded. It can be downloaded from the HuggingFace model hub or a local path, or a model id of a compiled model using the RBLN Compiler. |
required | |
args
|
Variable argument list. The format matches the original retrieved autoclass definition. |
()
|
|
kwargs
|
Additional keyword arguments. Arguments with the prefix 'rbln_' are passed to rbln_config, while the remaining arguments are passed to the HuggingFace library. |
{}
|
Returns:
Type | Description |
---|---|
A RBLN model instance ready for inference on RBLN NPU devices. |
register(rbln_cls, exist_ok=False)
staticmethod
¶
Register a new RBLN model class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
rbln_cls
|
Type[RBLNBaseModel]
|
The RBLN model class to register. |
required |
exist_ok
|
bool
|
Whether to allow registering an already registered model. |
False
|
RBLNAutoModelForTextEncoding
¶
Bases: _BaseAutoModelClass
Automatically detect Text Encoding Models.
Functions¶
from_pretrained(model_id, *args, **kwargs)
classmethod
¶
The from_pretrained()
function is utilized in its standard form as in the HuggingFace transformers library.
User can use this function to load a pre-trained model from the HuggingFace library and convert it to a RBLN model to be run on RBLN NPUs.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_id
|
The model id of the pre-trained model to be loaded. It can be downloaded from the HuggingFace model hub or a local path, or a model id of a compiled model using the RBLN Compiler. |
required | |
args
|
Variable argument list. The format matches the original retrieved autoclass definition. |
()
|
|
kwargs
|
Additional keyword arguments. Arguments with the prefix 'rbln_' are passed to rbln_config, while the remaining arguments are passed to the HuggingFace library. |
{}
|
Returns:
Type | Description |
---|---|
A RBLN model instance ready for inference on RBLN NPU devices. |
register(rbln_cls, exist_ok=False)
staticmethod
¶
Register a new RBLN model class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
rbln_cls
|
Type[RBLNBaseModel]
|
The RBLN model class to register. |
required |
exist_ok
|
bool
|
Whether to allow registering an already registered model. |
False
|