콘텐츠로 이동

Auto Classes

Auto Classes는 이름이나 경로를 기반으로 비슷한 트랜스포머 모델(가중치, 설정, 어휘 등)을 자동으로 불러옵니다. 이를 통해 사용자는 정확한 모델 아키텍처를 알지 못해도 모델을 쉽게 불러올 수 있습니다.

주요 클래스

커스텀 클래스 등록

AutoClass에는 커스텀 클래스를 추가하여 기능을 확장할 수 있는 register() 메서드가 있습니다. 예를 들어, RBLNMistralNeMoForTextUpsampler라는 커스텀 모델과 그 설정 클래스인 RBLNMistralNeMoForTextUpsamplerConfig를 만들었다면, 이들을 AutoClass에 추가하여 자동으로 불러올 수 있습니다.

  • 컴파일
from cosmos_upsampler import RBLNMistralNeMoForTextUpsampler, RBLNMistralNeMoForTextUpsamplerConfig

model_id = "nvidia/Cosmos-UpsamplePrompt1-12B-Text2World"

# Register Custom Class
RBLNAutoModel.register(RBLNMistralNeMoForTextUpsampler, exist_ok=True)
RBLNAutoConfig.register(RBLNMistralNeMoForTextUpsamplerConfig, exist_ok=True)

# Compile model
model = RBLNMistralNeMoForTextUpsampler.from_pretrained(
    model_id=upsampler_model_id,
    export=True,
    rbln_config={
        "batch_size": 1,
        "max_seq_len": 1024,
        "tensor_parallel_size": 4,
        "create_runtimes": False,
    },
)

model.save_pretrained(os.path.basename(model_id))
...
  • 추론
from cosmos_upsampler import RBLNMistralNeMoForTextUpsampler, RBLNMistralNeMoForTextUpsamplerConfig
...
model_id = "nvidia/Cosmos-UpsamplePrompt1-12B-Text2World"
model_dir = os.path.basename(model_id)

# Register Custom Class
RBLNAutoModel.register(RBLNMistralNeMoForTextUpsampler, exist_ok=True)
RBLNAutoConfig.register(RBLNMistralNeMoForTextUpsamplerConfig, exist_ok=True)

# Load from compiled model
model = RBLNMistralNeMoForTextUpsampler.from_pretrained(
    model_dir,
    export=False,
)
...

지원되는 모델

  • 연결 시계열 분류 (CTC)
Model Model Architecture AutoClass
Wav2Vec2 Wav2Vec2ForCTC RBLNAutoModelForCTC
  • 인과 언어 모델 (CausalLM)
Model Model Architecture AutoClass
DeepSeek-R1-Distill-Llama-8b LlamaForCausalLM RBLNAutoModelForCausalLM
DeepSeek-R1-Distill-Llama-70b LlamaForCausalLM RBLNAutoModelForCausalLM
DeepSeek-R1-Distill-Qwen-1.5b Qwen2ForCausalLM RBLNAutoModelForCausalLM
DeepSeek-R1-Distill-Qwen-7b Qwen2ForCausalLM RBLNAutoModelForCausalLM
DeepSeek-R1-Distill-Qwen-14b Qwen2ForCausalLM RBLNAutoModelForCausalLM
DeepSeek-R1-Distill-Qwen-32b Qwen2ForCausalLM RBLNAutoModelForCausalLM
Llama3.3-70b LlamaForCausalLM RBLNAutoModelForCausalLM
Llama3.2-3b LlamaForCausalLM RBLNAutoModelForCausalLM
Llama3.1-70b LlamaForCausalLM RBLNAutoModelForCausalLM
Llama3.1-8b LlamaForCausalLM RBLNAutoModelForCausalLM
Llama3-8b LlamaForCausalLM RBLNAutoModelForCausalLM
Llama3-8b + LoRA LlamaForCausalLM RBLNAutoModelForCausalLM
Llama2-7b LlamaForCausalLM RBLNAutoModelForCausalLM
Llama2-13b LlamaForCausalLM RBLNAutoModelForCausalLM
Phi-2 PhiForCausalLM RBLNAutoModelForCausalLM
Gemma-7b GemmaForCausalLM RBLNAutoModelForCausalLM
Gemma-2b GemmaForCausalLM RBLNAutoModelForCausalLM
OPT-2.7b OPTForCausalLM RBLNAutoModelForCausalLM
Mistral-7b MistralForCausalLM RBLNAutoModelForCausalLM
A.X-4.0-Light Qwen2ForCausalLM RBLNAutoModelForCausalLM
Qwen2-7b Qwen2ForCausalLM RBLNAutoModelForCausalLM
Qwen2.5-0.5b Qwen2ForCausalLM RBLNAutoModelForCausalLM
Qwen2.5-1.5b Qwen2ForCausalLM RBLNAutoModelForCausalLM
Qwen2.5-3b Qwen2ForCausalLM RBLNAutoModelForCausalLM
Qwen2.5-7b Qwen2ForCausalLM RBLNAutoModelForCausalLM
Qwen2.5-14b Qwen2ForCausalLM RBLNAutoModelForCausalLM
Qwen2.5-32b Qwen2ForCausalLM RBLNAutoModelForCausalLM
Qwen2.5-72b Qwen2ForCausalLM RBLNAutoModelForCausalLM
Qwen3-0.6b Qwen3ForCausalLM RBLNAutoModelForCausalLM
Qwen3-1.7b Qwen3ForCausalLM RBLNAutoModelForCausalLM
Qwen3-4b Qwen3ForCausalLM RBLNAutoModelForCausalLM
Qwen3-8b Qwen3ForCausalLM RBLNAutoModelForCausalLM
Qwen3-32b Qwen3ForCausalLM RBLNAutoModelForCausalLM
Midm-2.0-Mini LlamaForCausalLM RBLNAutoModelForCausalLM
Midm-2.0-Base LlamaForCausalLM RBLNAutoModelForCausalLM
Salamandra-7b LlamaForCausalLM RBLNAutoModelForCausalLM
KONI-Llama3.1-8b LlamaForCausalLM RBLNAutoModelForCausalLM
EXAONE-3.0-7.8b ExaoneForCausalLM RBLNAutoModelForCausalLM
EXAONE-3.5-2.4b ExaoneForCausalLM RBLNAutoModelForCausalLM
EXAONE-3.5-7.8b ExaoneForCausalLM RBLNAutoModelForCausalLM
EXAONE-3.5-32b ExaoneForCausalLM RBLNAutoModelForCausalLM
GPT2 GPT2LMHeadModel RBLNAutoModelForCausalLM
GPT2-medium GPT2LMHeadModel RBLNAutoModelForCausalLM
GPT2-large GPT2LMHeadModel RBLNAutoModelForCausalLM
GPT2-xl GPT2LMHeadModel RBLNAutoModelForCausalLM
OPT-6.7b OPTForCausalLM RBLNAutoModelForCausalLM
SOLAR-10.7b LlamaForCausalLM RBLNAutoModelForCausalLM
EEVE-Korean-10.8b LlamaForCausalLM RBLNAutoModelForCausalLM
  • 시퀀스-투-시퀀스 언어 모델 (Seq2SeqLM)
Model Model Architecture AutoClass
T5-11b T5ForConditionalGeneration RBLNAutoModelForSeq2SeqLM
T5-small T5ForConditionalGeneration RBLNAutoModelForSeq2SeqLM
T5-base T5ForConditionalGeneration RBLNAutoModelForSeq2SeqLM
T5-large T5ForConditionalGeneration RBLNAutoModelForSeq2SeqLM
T5-3b T5ForConditionalGeneration RBLNAutoModelForSeq2SeqLM
BART-base BartForConditionalGeneration RBLNAutoModelForSeq2SeqLM
BART-large BartForConditionalGeneration RBLNAutoModelForSeq2SeqLM
KoBART-base BartForConditionalGeneration RBLNAutoModelForSeq2SeqLM
Pegasus PegasusForConditionalGeneration RBLNAutoModelForSeq2SeqLM
  • 깊이 추정 (DepthEstimation)
Model Model Architecture AutoClass
Depth-Anything-V2-Small DepthAnythingForDepthEstimation RBLNAutoModelForDepthEstimation
Depth-Anything-V2-Base DepthAnythingForDepthEstimation RBLNAutoModelForDepthEstimation
Depth-Anything-V2-Large DepthAnythingForDepthEstimation RBLNAutoModelForDepthEstimation
DPT-large DPTForDepthEstimation RBLNAutoModelForDepthEstimation
  • 시퀀스 분류 (SequenceClassification)
Model Model Architecture AutoClass
RoBERTa RobertaForSequenceClassification RBLNAutoModelForSequenceClassification
BGE-Reranker-V2-M3 XLMRobertaForSequenceClassification RBLNAutoModelForSequenceClassification
BGE-Reranker-Base XLMRobertaForSequenceClassification RBLNAutoModelForSequenceClassification
BGE-Reranker-Large XLMRobertaForSequenceClassification RBLNAutoModelForSequenceClassification
Ko-Reranker XLMRobertaForSequenceClassification RBLNAutoModelForSequenceClassification
  • 음성 시퀀스에서 시퀀스 생성 (SpeechSeq2Seq)
Model Model Architecture AutoClass
Whisper-tiny WhisperForConditionalGeneration RBLNAutoModelForSpeechSeq2Seq
Whisper-base WhisperForConditionalGeneration RBLNAutoModelForSpeechSeq2Seq
Whisper-small WhisperForConditionalGeneration RBLNAutoModelForSpeechSeq2Seq
Whisper-medium WhisperForConditionalGeneration RBLNAutoModelForSpeechSeq2Seq
Whisper-large-v3 WhisperForConditionalGeneration RBLNAutoModelForSpeechSeq2Seq
Whisper-large-v3-turbo WhisperForConditionalGeneration RBLNAutoModelForSpeechSeq2Seq
  • 이미지에서 시퀀스 생성 (Vision2Seq)
Model Model Architecture AutoClass
Qwen2.5-VL-7b Qwen2_5_VLForConditionalGeneration RBLNAutoModelForVision2Seq
Idefics3-8B-Llama3 Idefics3ForConditionalGeneration RBLNAutoModelForVision2Seq
Llava-v1.5-7b LlavaForConditionalGeneration RBLNAutoModelForVision2Seq
Llava-v1.6-mistral-7b LlavaNextForConditionalGeneration RBLNAutoModelForVision2Seq
Pixtral-12b LlavaForConditionalGeneration RBLNAutoModelForVision2Seq
BLIP2-6.7b RBLNBlip2ForConditionalGeneration RBLNAutoModelForVision2Seq
BLIP2-2.7b RBLNBlip2ForConditionalGeneration RBLNAutoModelForVision2Seq
  • 이미지 및 문자에서 문자 생성 (ImageTextToText)
Model Model Architecture AutoClass
Gemma3-4b Gemma3ForConditionalGeneration RBLNAutoModelForImageTextToText
Gemma3-12b Gemma3ForConditionalGeneration RBLNAutoModelForImageTextToText
Gemma3-27b Gemma3ForConditionalGeneration RBLNAutoModelForImageTextToText
Qwen2.5-VL-7b Qwen2_5_VLForConditionalGeneration RBLNAutoModelForImageTextToText
Idefics3-8B-Llama3 Idefics3ForConditionalGeneration RBLNAutoModelForImageTextToText
Llava-v1.5-7b LlavaForConditionalGeneration RBLNAutoModelForImageTextToText
Llava-v1.6-mistral-7b LlavaNextForConditionalGeneration RBLNAutoModelForImageTextToText
Pixtral-12b LlavaForConditionalGeneration RBLNAutoModelForImageTextToText
BLIP2-6.7b RBLNBlip2ForConditionalGeneration RBLNAutoModelForImageTextToText
BLIP2-2.7b RBLNBlip2ForConditionalGeneration RBLNAutoModelForImageTextToText
  • 마스킹 자연어 모델 (MaskedLM)
Model Model Architecture AutoClass
BERT-base BertForMaskedLM RBLNAutoModelForMaskedLM
BERT-large BertForMaskedLM RBLNAutoModelForMaskedLM
SecureBERT RobertaForMaskedLM RBLNAutoModelForMaskedLM
  • 음성 분류 (AudioClassification)
Model Model Architecture AutoClass
Audio-Spectogram-Transformer ASTForAudioClassification RBLNAutoModelForAudioClassification
  • 이미지 분류 (ImageClassification)
Model Model Architecture AutoClass
ViT-large ViTForImageClassification RBLNAutoModelForImageClassification
ResNet50 ResNetForImageClassification RBLNAutoModelForImageClassification
  • 질문-답변 (QuestionAnswering)
Model Model Architecture AutoClass
BERT-base BertForQuestionAnswering RBLNAutoModelForQuestionAnswering
BERT-large BertForQuestionAnswering RBLNAutoModelForQuestionAnswering
  • 문자 인코딩 (TextEncoding)
Model Model Architecture AutoClass
T5-Enc-11b T5EncoderModel RBLNAutoModelForTextEncoding
Qwen3-Embedding-4b Qwen3Model RBLNAutoModelForTextEncoding
Qwen3-Embedding-0.6b Qwen3Model RBLNAutoModelForTextEncoding
E5-base-4K BertModel RBLNAutoModelForTextEncoding
KR-SBERT-V40K-klueNLI-augSTS BertModel RBLNAutoModelForTextEncoding
BGE-Small-EN-v1.5 RBLNBertModel RBLNAutoModelForTextEncoding
BGE-Large-EN-v1.5 RBLNBertModel RBLNAutoModelForTextEncoding
BGE-M3 XLMRobertaModel RBLNAutoModelForTextEncoding

API 참조

Classes

RBLNAutoConfig

Functions

register(config, exist_ok=False) staticmethod

Register a new configuration for this class.

Parameters:

Name Type Description Default
config [`RBLNModelConfig`]

The config to register.

required
exist_ok bool

Whether to allow registering an already registered model.

False
load(path, passed_rbln_config=None, kwargs={}, return_unused_kwargs=False) staticmethod

Load RBLNModelConfig from a path. Class name is automatically inferred from the rbln_config.json file.

Parameters:

Name Type Description Default
path str

Path to the RBLNModelConfig.

required
passed_rbln_config Optional[RBLNModelConfig]

RBLNModelConfig to pass its runtime options.

None

Returns:

Name Type Description
RBLNModelConfig Union[RBLNModelConfig, Tuple[RBLNModelConfig, Dict[str, Any]]]

The loaded RBLNModelConfig.

Classes

RBLNAutoModel

Bases: _BaseAutoModelClass

Automatically detect all supported transformers models.

Functions

from_pretrained(model_id, *args, **kwargs) classmethod

The from_pretrained() function is utilized in its standard form as in the HuggingFace transformers library. User can use this function to load a pre-trained model from the HuggingFace library and convert it to a RBLN model to be run on RBLN NPUs.

Parameters:

Name Type Description Default
model_id

The model id of the pre-trained model to be loaded. It can be downloaded from the HuggingFace model hub or a local path, or a model id of a compiled model using the RBLN Compiler.

required
args

Variable argument list. The format matches the original retrieved autoclass definition.

()
kwargs

Additional keyword arguments. Arguments with the prefix 'rbln_' are passed to rbln_config, while the remaining arguments are passed to the HuggingFace library.

{}

Returns:

Type Description

A RBLN model instance ready for inference on RBLN NPU devices.

register(rbln_cls, exist_ok=False) staticmethod

Register a new RBLN model class.

Parameters:

Name Type Description Default
rbln_cls Type[RBLNBaseModel]

The RBLN model class to register.

required
exist_ok bool

Whether to allow registering an already registered model.

False

RBLNAutoModelForCTC

Bases: _BaseAutoModelClass

Automatically detect Connectionist Temporal Classification (CTC) head Models.

Functions

from_pretrained(model_id, *args, **kwargs) classmethod

The from_pretrained() function is utilized in its standard form as in the HuggingFace transformers library. User can use this function to load a pre-trained model from the HuggingFace library and convert it to a RBLN model to be run on RBLN NPUs.

Parameters:

Name Type Description Default
model_id

The model id of the pre-trained model to be loaded. It can be downloaded from the HuggingFace model hub or a local path, or a model id of a compiled model using the RBLN Compiler.

required
args

Variable argument list. The format matches the original retrieved autoclass definition.

()
kwargs

Additional keyword arguments. Arguments with the prefix 'rbln_' are passed to rbln_config, while the remaining arguments are passed to the HuggingFace library.

{}

Returns:

Type Description

A RBLN model instance ready for inference on RBLN NPU devices.

register(rbln_cls, exist_ok=False) staticmethod

Register a new RBLN model class.

Parameters:

Name Type Description Default
rbln_cls Type[RBLNBaseModel]

The RBLN model class to register.

required
exist_ok bool

Whether to allow registering an already registered model.

False

RBLNAutoModelForCausalLM

Bases: _BaseAutoModelClass

Automatically detect Casual Language Models.

Functions

from_pretrained(model_id, *args, **kwargs) classmethod

The from_pretrained() function is utilized in its standard form as in the HuggingFace transformers library. User can use this function to load a pre-trained model from the HuggingFace library and convert it to a RBLN model to be run on RBLN NPUs.

Parameters:

Name Type Description Default
model_id

The model id of the pre-trained model to be loaded. It can be downloaded from the HuggingFace model hub or a local path, or a model id of a compiled model using the RBLN Compiler.

required
args

Variable argument list. The format matches the original retrieved autoclass definition.

()
kwargs

Additional keyword arguments. Arguments with the prefix 'rbln_' are passed to rbln_config, while the remaining arguments are passed to the HuggingFace library.

{}

Returns:

Type Description

A RBLN model instance ready for inference on RBLN NPU devices.

register(rbln_cls, exist_ok=False) staticmethod

Register a new RBLN model class.

Parameters:

Name Type Description Default
rbln_cls Type[RBLNBaseModel]

The RBLN model class to register.

required
exist_ok bool

Whether to allow registering an already registered model.

False

RBLNAutoModelForSeq2SeqLM

Bases: _BaseAutoModelClass

Automatically detect Sequence to Sequence Language Models.

Functions

from_pretrained(model_id, *args, **kwargs) classmethod

The from_pretrained() function is utilized in its standard form as in the HuggingFace transformers library. User can use this function to load a pre-trained model from the HuggingFace library and convert it to a RBLN model to be run on RBLN NPUs.

Parameters:

Name Type Description Default
model_id

The model id of the pre-trained model to be loaded. It can be downloaded from the HuggingFace model hub or a local path, or a model id of a compiled model using the RBLN Compiler.

required
args

Variable argument list. The format matches the original retrieved autoclass definition.

()
kwargs

Additional keyword arguments. Arguments with the prefix 'rbln_' are passed to rbln_config, while the remaining arguments are passed to the HuggingFace library.

{}

Returns:

Type Description

A RBLN model instance ready for inference on RBLN NPU devices.

register(rbln_cls, exist_ok=False) staticmethod

Register a new RBLN model class.

Parameters:

Name Type Description Default
rbln_cls Type[RBLNBaseModel]

The RBLN model class to register.

required
exist_ok bool

Whether to allow registering an already registered model.

False

RBLNAutoModelForSpeechSeq2Seq

Bases: _BaseAutoModelClass

Automatically detect Sequence to Sequence Generation Models.

Functions

from_pretrained(model_id, *args, **kwargs) classmethod

The from_pretrained() function is utilized in its standard form as in the HuggingFace transformers library. User can use this function to load a pre-trained model from the HuggingFace library and convert it to a RBLN model to be run on RBLN NPUs.

Parameters:

Name Type Description Default
model_id

The model id of the pre-trained model to be loaded. It can be downloaded from the HuggingFace model hub or a local path, or a model id of a compiled model using the RBLN Compiler.

required
args

Variable argument list. The format matches the original retrieved autoclass definition.

()
kwargs

Additional keyword arguments. Arguments with the prefix 'rbln_' are passed to rbln_config, while the remaining arguments are passed to the HuggingFace library.

{}

Returns:

Type Description

A RBLN model instance ready for inference on RBLN NPU devices.

register(rbln_cls, exist_ok=False) staticmethod

Register a new RBLN model class.

Parameters:

Name Type Description Default
rbln_cls Type[RBLNBaseModel]

The RBLN model class to register.

required
exist_ok bool

Whether to allow registering an already registered model.

False

RBLNAutoModelForDepthEstimation

Bases: _BaseAutoModelClass

Automatically detect Speech Sequence to Sequence Language Models.

Functions

from_pretrained(model_id, *args, **kwargs) classmethod

The from_pretrained() function is utilized in its standard form as in the HuggingFace transformers library. User can use this function to load a pre-trained model from the HuggingFace library and convert it to a RBLN model to be run on RBLN NPUs.

Parameters:

Name Type Description Default
model_id

The model id of the pre-trained model to be loaded. It can be downloaded from the HuggingFace model hub or a local path, or a model id of a compiled model using the RBLN Compiler.

required
args

Variable argument list. The format matches the original retrieved autoclass definition.

()
kwargs

Additional keyword arguments. Arguments with the prefix 'rbln_' are passed to rbln_config, while the remaining arguments are passed to the HuggingFace library.

{}

Returns:

Type Description

A RBLN model instance ready for inference on RBLN NPU devices.

register(rbln_cls, exist_ok=False) staticmethod

Register a new RBLN model class.

Parameters:

Name Type Description Default
rbln_cls Type[RBLNBaseModel]

The RBLN model class to register.

required
exist_ok bool

Whether to allow registering an already registered model.

False

RBLNAutoModelForSequenceClassification

Bases: _BaseAutoModelClass

Automatically detect Sequence Classification Models.

Functions

from_pretrained(model_id, *args, **kwargs) classmethod

The from_pretrained() function is utilized in its standard form as in the HuggingFace transformers library. User can use this function to load a pre-trained model from the HuggingFace library and convert it to a RBLN model to be run on RBLN NPUs.

Parameters:

Name Type Description Default
model_id

The model id of the pre-trained model to be loaded. It can be downloaded from the HuggingFace model hub or a local path, or a model id of a compiled model using the RBLN Compiler.

required
args

Variable argument list. The format matches the original retrieved autoclass definition.

()
kwargs

Additional keyword arguments. Arguments with the prefix 'rbln_' are passed to rbln_config, while the remaining arguments are passed to the HuggingFace library.

{}

Returns:

Type Description

A RBLN model instance ready for inference on RBLN NPU devices.

register(rbln_cls, exist_ok=False) staticmethod

Register a new RBLN model class.

Parameters:

Name Type Description Default
rbln_cls Type[RBLNBaseModel]

The RBLN model class to register.

required
exist_ok bool

Whether to allow registering an already registered model.

False

RBLNAutoModelForVision2Seq

Bases: _BaseAutoModelClass

Automatically detect Vision to Sequence Generation Models.

Functions

from_pretrained(model_id, *args, **kwargs) classmethod

The from_pretrained() function is utilized in its standard form as in the HuggingFace transformers library. User can use this function to load a pre-trained model from the HuggingFace library and convert it to a RBLN model to be run on RBLN NPUs.

Parameters:

Name Type Description Default
model_id

The model id of the pre-trained model to be loaded. It can be downloaded from the HuggingFace model hub or a local path, or a model id of a compiled model using the RBLN Compiler.

required
args

Variable argument list. The format matches the original retrieved autoclass definition.

()
kwargs

Additional keyword arguments. Arguments with the prefix 'rbln_' are passed to rbln_config, while the remaining arguments are passed to the HuggingFace library.

{}

Returns:

Type Description

A RBLN model instance ready for inference on RBLN NPU devices.

register(rbln_cls, exist_ok=False) staticmethod

Register a new RBLN model class.

Parameters:

Name Type Description Default
rbln_cls Type[RBLNBaseModel]

The RBLN model class to register.

required
exist_ok bool

Whether to allow registering an already registered model.

False

RBLNAutoModelForImageTextToText

Bases: _BaseAutoModelClass

Automatically detect Image and Text to Text Generation Models.

Functions

from_pretrained(model_id, *args, **kwargs) classmethod

The from_pretrained() function is utilized in its standard form as in the HuggingFace transformers library. User can use this function to load a pre-trained model from the HuggingFace library and convert it to a RBLN model to be run on RBLN NPUs.

Parameters:

Name Type Description Default
model_id

The model id of the pre-trained model to be loaded. It can be downloaded from the HuggingFace model hub or a local path, or a model id of a compiled model using the RBLN Compiler.

required
args

Variable argument list. The format matches the original retrieved autoclass definition.

()
kwargs

Additional keyword arguments. Arguments with the prefix 'rbln_' are passed to rbln_config, while the remaining arguments are passed to the HuggingFace library.

{}

Returns:

Type Description

A RBLN model instance ready for inference on RBLN NPU devices.

register(rbln_cls, exist_ok=False) staticmethod

Register a new RBLN model class.

Parameters:

Name Type Description Default
rbln_cls Type[RBLNBaseModel]

The RBLN model class to register.

required
exist_ok bool

Whether to allow registering an already registered model.

False

RBLNAutoModelForMaskedLM

Bases: _BaseAutoModelClass

Automatically detect Masked Lanuage Models.

Functions

from_pretrained(model_id, *args, **kwargs) classmethod

The from_pretrained() function is utilized in its standard form as in the HuggingFace transformers library. User can use this function to load a pre-trained model from the HuggingFace library and convert it to a RBLN model to be run on RBLN NPUs.

Parameters:

Name Type Description Default
model_id

The model id of the pre-trained model to be loaded. It can be downloaded from the HuggingFace model hub or a local path, or a model id of a compiled model using the RBLN Compiler.

required
args

Variable argument list. The format matches the original retrieved autoclass definition.

()
kwargs

Additional keyword arguments. Arguments with the prefix 'rbln_' are passed to rbln_config, while the remaining arguments are passed to the HuggingFace library.

{}

Returns:

Type Description

A RBLN model instance ready for inference on RBLN NPU devices.

register(rbln_cls, exist_ok=False) staticmethod

Register a new RBLN model class.

Parameters:

Name Type Description Default
rbln_cls Type[RBLNBaseModel]

The RBLN model class to register.

required
exist_ok bool

Whether to allow registering an already registered model.

False

RBLNAutoModelForAudioClassification

Bases: _BaseAutoModelClass

Automatically detect Audio Classification Models.

Functions

from_pretrained(model_id, *args, **kwargs) classmethod

The from_pretrained() function is utilized in its standard form as in the HuggingFace transformers library. User can use this function to load a pre-trained model from the HuggingFace library and convert it to a RBLN model to be run on RBLN NPUs.

Parameters:

Name Type Description Default
model_id

The model id of the pre-trained model to be loaded. It can be downloaded from the HuggingFace model hub or a local path, or a model id of a compiled model using the RBLN Compiler.

required
args

Variable argument list. The format matches the original retrieved autoclass definition.

()
kwargs

Additional keyword arguments. Arguments with the prefix 'rbln_' are passed to rbln_config, while the remaining arguments are passed to the HuggingFace library.

{}

Returns:

Type Description

A RBLN model instance ready for inference on RBLN NPU devices.

register(rbln_cls, exist_ok=False) staticmethod

Register a new RBLN model class.

Parameters:

Name Type Description Default
rbln_cls Type[RBLNBaseModel]

The RBLN model class to register.

required
exist_ok bool

Whether to allow registering an already registered model.

False

RBLNAutoModelForImageClassification

Bases: _BaseAutoModelClass

Automatically detect Image Classification Models.

Functions

from_pretrained(model_id, *args, **kwargs) classmethod

The from_pretrained() function is utilized in its standard form as in the HuggingFace transformers library. User can use this function to load a pre-trained model from the HuggingFace library and convert it to a RBLN model to be run on RBLN NPUs.

Parameters:

Name Type Description Default
model_id

The model id of the pre-trained model to be loaded. It can be downloaded from the HuggingFace model hub or a local path, or a model id of a compiled model using the RBLN Compiler.

required
args

Variable argument list. The format matches the original retrieved autoclass definition.

()
kwargs

Additional keyword arguments. Arguments with the prefix 'rbln_' are passed to rbln_config, while the remaining arguments are passed to the HuggingFace library.

{}

Returns:

Type Description

A RBLN model instance ready for inference on RBLN NPU devices.

register(rbln_cls, exist_ok=False) staticmethod

Register a new RBLN model class.

Parameters:

Name Type Description Default
rbln_cls Type[RBLNBaseModel]

The RBLN model class to register.

required
exist_ok bool

Whether to allow registering an already registered model.

False

RBLNAutoModelForQuestionAnswering

Bases: _BaseAutoModelClass

Automatically detect Question Answering Models.

Functions

from_pretrained(model_id, *args, **kwargs) classmethod

The from_pretrained() function is utilized in its standard form as in the HuggingFace transformers library. User can use this function to load a pre-trained model from the HuggingFace library and convert it to a RBLN model to be run on RBLN NPUs.

Parameters:

Name Type Description Default
model_id

The model id of the pre-trained model to be loaded. It can be downloaded from the HuggingFace model hub or a local path, or a model id of a compiled model using the RBLN Compiler.

required
args

Variable argument list. The format matches the original retrieved autoclass definition.

()
kwargs

Additional keyword arguments. Arguments with the prefix 'rbln_' are passed to rbln_config, while the remaining arguments are passed to the HuggingFace library.

{}

Returns:

Type Description

A RBLN model instance ready for inference on RBLN NPU devices.

register(rbln_cls, exist_ok=False) staticmethod

Register a new RBLN model class.

Parameters:

Name Type Description Default
rbln_cls Type[RBLNBaseModel]

The RBLN model class to register.

required
exist_ok bool

Whether to allow registering an already registered model.

False

RBLNAutoModelForTextEncoding

Bases: _BaseAutoModelClass

Automatically detect Text Encoding Models.

Functions

from_pretrained(model_id, *args, **kwargs) classmethod

The from_pretrained() function is utilized in its standard form as in the HuggingFace transformers library. User can use this function to load a pre-trained model from the HuggingFace library and convert it to a RBLN model to be run on RBLN NPUs.

Parameters:

Name Type Description Default
model_id

The model id of the pre-trained model to be loaded. It can be downloaded from the HuggingFace model hub or a local path, or a model id of a compiled model using the RBLN Compiler.

required
args

Variable argument list. The format matches the original retrieved autoclass definition.

()
kwargs

Additional keyword arguments. Arguments with the prefix 'rbln_' are passed to rbln_config, while the remaining arguments are passed to the HuggingFace library.

{}

Returns:

Type Description

A RBLN model instance ready for inference on RBLN NPU devices.

register(rbln_cls, exist_ok=False) staticmethod

Register a new RBLN model class.

Parameters:

Name Type Description Default
rbln_cls Type[RBLNBaseModel]

The RBLN model class to register.

required
exist_ok bool

Whether to allow registering an already registered model.

False