Idefics3¶
Idefics3 모델은 이미지와 텍스트 입력의 임의의 시퀀스를 받아 텍스트 출력을 생성하는 오픈 멀티모달 모델입니다. 이 모델은 이미지에 대한 질문에 답하거나, 시각적 콘텐츠를 설명하고, 여러 이미지를 기반으로 이야기를 만들거나, 시각적 입력 없이 순수한 언어 모델로 작동할 수 있습니다. RBLN NPU는 Optimum RBLN을 사용하여 Idefics3 모델 추론을 가속화할 수 있습니다.
API Reference¶
Classes¶
RBLNIdefics3VisionTransformer
¶
Bases: RBLNModel
Functions¶
from_model(model, config=None, rbln_config=None, model_save_dir=None, subfolder='', **kwargs)
classmethod
¶
Converts and compiles a pre-trained HuggingFace library model into a RBLN model. This method performs the actual model conversion and compilation process.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
PreTrainedModel
|
The PyTorch model to be compiled. The object must be an instance of the HuggingFace transformers PreTrainedModel class. |
required |
config
|
Optional[PretrainedConfig]
|
The configuration object associated with the model. |
None
|
rbln_config
|
Optional[Union[RBLNModelConfig, Dict]]
|
Configuration for RBLN model compilation and runtime.
This can be provided as a dictionary or an instance of the model's configuration class (e.g., |
None
|
kwargs
|
Any
|
Additional keyword arguments. Arguments with the prefix |
{}
|
The method performs the following steps:
- Compiles the PyTorch model into an optimized RBLN graph
- Configures the model for the specified NPU device
- Creates the necessary runtime objects if requested
- Saves the compiled model and configurations
Returns:
Type | Description |
---|---|
RBLNModel
|
A RBLN model instance ready for inference on RBLN NPU devices. |
from_pretrained(model_id, export=None, rbln_config=None, **kwargs)
classmethod
¶
The from_pretrained()
function is utilized in its standard form as in the HuggingFace transformers library.
User can use this function to load a pre-trained model from the HuggingFace library and convert it to a RBLN model to be run on RBLN NPUs.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_id
|
Union[str, Path]
|
The model id of the pre-trained model to be loaded. It can be downloaded from the HuggingFace model hub or a local path, or a model id of a compiled model using the RBLN Compiler. |
required |
export
|
Optional[bool]
|
A boolean flag to indicate whether the model should be compiled. If None, it will be determined based on the existence of the compiled model files in the model_id. |
None
|
rbln_config
|
Optional[Union[Dict, RBLNModelConfig]]
|
Configuration for RBLN model compilation and runtime.
This can be provided as a dictionary or an instance of the model's configuration class (e.g., |
None
|
kwargs
|
Any
|
Additional keyword arguments. Arguments with the prefix |
{}
|
Returns:
Type | Description |
---|---|
RBLNModel
|
A RBLN model instance ready for inference on RBLN NPU devices. |
save_pretrained(save_directory, push_to_hub=False, **kwargs)
¶
Saves a model and its configuration file to a directory, so that it can be re-loaded using the
[~optimum.rbln.modeling_base.RBLNBaseModel.from_pretrained
] class method.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
save_directory
|
Union[str, Path]
|
Directory where to save the model file. |
required |
push_to_hub
|
bool
|
Whether or not to push your model to the HuggingFace model hub after saving it. |
False
|
RBLNIdefics3ForConditionalGeneration
¶
Bases: RBLNModel
RBLNIdefics3ForConditionalGeneration is a multi-modal model that integrates vision and language processing capabilities, optimized for RBLN NPUs. It is designed for conditional generation tasks that involve both image and text inputs.
This model inherits from [RBLNModel
]. Check the superclass documentation for the generic methods the library implements for all its models.
Important Note
This model includes a Large Language Model (LLM) as a submodule. For optimal performance, it is highly recommended to use
tensor parallelism for the language model. This can be achieved by using the rbln_config
parameter in the
from_pretrained
method. Refer to the from_pretrained
documentation and the RBLNIdefics3ForConditionalGenerationConfig class for details.
Examples:
Functions¶
from_model(model, config=None, rbln_config=None, model_save_dir=None, subfolder='', **kwargs)
classmethod
¶
Converts and compiles a pre-trained HuggingFace library model into a RBLN model. This method performs the actual model conversion and compilation process.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
PreTrainedModel
|
The PyTorch model to be compiled. The object must be an instance of the HuggingFace transformers PreTrainedModel class. |
required |
config
|
Optional[PretrainedConfig]
|
The configuration object associated with the model. |
None
|
rbln_config
|
Optional[Union[RBLNModelConfig, Dict]]
|
Configuration for RBLN model compilation and runtime.
This can be provided as a dictionary or an instance of the model's configuration class (e.g., |
None
|
kwargs
|
Any
|
Additional keyword arguments. Arguments with the prefix |
{}
|
The method performs the following steps:
- Compiles the PyTorch model into an optimized RBLN graph
- Configures the model for the specified NPU device
- Creates the necessary runtime objects if requested
- Saves the compiled model and configurations
Returns:
Type | Description |
---|---|
RBLNModel
|
A RBLN model instance ready for inference on RBLN NPU devices. |
from_pretrained(model_id, export=None, rbln_config=None, **kwargs)
classmethod
¶
The from_pretrained()
function is utilized in its standard form as in the HuggingFace transformers library.
User can use this function to load a pre-trained model from the HuggingFace library and convert it to a RBLN model to be run on RBLN NPUs.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_id
|
Union[str, Path]
|
The model id of the pre-trained model to be loaded. It can be downloaded from the HuggingFace model hub or a local path, or a model id of a compiled model using the RBLN Compiler. |
required |
export
|
Optional[bool]
|
A boolean flag to indicate whether the model should be compiled. If None, it will be determined based on the existence of the compiled model files in the model_id. |
None
|
rbln_config
|
Optional[Union[Dict, RBLNModelConfig]]
|
Configuration for RBLN model compilation and runtime.
This can be provided as a dictionary or an instance of the model's configuration class (e.g., |
None
|
kwargs
|
Any
|
Additional keyword arguments. Arguments with the prefix |
{}
|
Returns:
Type | Description |
---|---|
RBLNModel
|
A RBLN model instance ready for inference on RBLN NPU devices. |
save_pretrained(save_directory, push_to_hub=False, **kwargs)
¶
Saves a model and its configuration file to a directory, so that it can be re-loaded using the
[~optimum.rbln.modeling_base.RBLNBaseModel.from_pretrained
] class method.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
save_directory
|
Union[str, Path]
|
Directory where to save the model file. |
required |
push_to_hub
|
bool
|
Whether or not to push your model to the HuggingFace model hub after saving it. |
False
|
Classes¶
RBLNIdefics3VisionTransformerConfig
¶
Bases: RBLNModelConfig
Functions¶
__init__(cls_name=None, create_runtimes=None, optimize_host_memory=None, device=None, device_map=None, activate_profiler=None, npu=None, tensor_parallel_size=None, timeout=None, optimum_rbln_version=None, _torch_dtype=None, _compile_cfgs=[], **kwargs)
¶
Initialize a RBLN model configuration with runtime options and compile configurations.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cls_name
|
Optional[str]
|
The class name of the configuration. Defaults to the current class name. |
None
|
create_runtimes
|
Optional[bool]
|
Whether to create RBLN runtimes. Defaults to True. |
None
|
optimize_host_memory
|
Optional[bool]
|
Whether to optimize host memory usage. Defaults to True. |
None
|
device
|
Optional[Union[int, List[int]]]
|
The device(s) to load the model onto. Can be a single device ID or a list. |
None
|
device_map
|
Optional[Dict[str, Union[int, List[int]]]]
|
Mapping from compiled model names to device IDs. |
None
|
activate_profiler
|
Optional[bool]
|
Whether to activate the profiler for performance analysis. |
None
|
npu
|
Optional[str]
|
The NPU device name to use for compilation. |
None
|
tensor_parallel_size
|
Optional[int]
|
Size for tensor parallelism to distribute the model across devices. |
None
|
timeout
|
Optional[int]
|
The timeout for the runtime in seconds. If it isn't provided, it will be set to 60 by default. |
None
|
optimum_rbln_version
|
Optional[str]
|
The optimum-rbln version used for this configuration. |
None
|
_torch_dtype
|
Optional[str]
|
The data type to use for the model. |
None
|
_compile_cfgs
|
List[RBLNCompileConfig]
|
List of compilation configurations for the model. |
[]
|
kwargs
|
Any
|
Additional keyword arguments. |
{}
|
Raises:
Type | Description |
---|---|
ValueError
|
If unexpected keyword arguments are provided. |
load(path, **kwargs)
classmethod
¶
Load a RBLNModelConfig from a path.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path
|
str
|
Path to the RBLNModelConfig file or directory containing the config file. |
required |
kwargs
|
Any
|
Additional keyword arguments to override configuration values. Keys starting with 'rbln_' will have the prefix removed and be used to update the configuration. |
{}
|
Returns:
Name | Type | Description |
---|---|---|
RBLNModelConfig |
RBLNModelConfig
|
The loaded configuration instance. |
Note
This method loads the configuration from the specified path and applies any provided overrides. If the loaded configuration class doesn't match the expected class, a warning will be logged.
RBLNIdefics3ForConditionalGenerationConfig
¶
Bases: RBLNModelConfig
Configuration class for RBLNIdefics3ForConditionalGeneration models.
This class extends RBLNModelConfig
to include settings specific to the Idefics3 vision-language model optimized for RBLN devices.
It allows configuration of the batch size and separate configurations for the vision and text submodules.
Attributes:
Name | Type | Description |
---|---|---|
submodules |
List[str]
|
List of submodules included in the model. Defaults to |
Functions¶
__init__(batch_size=None, vision_model=None, text_model=None, **kwargs)
¶
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch_size
|
Optional[int]
|
The batch size for inference. Defaults to 1. |
None
|
vision_model
|
Optional[RBLNModelConfig]
|
Configuration for the vision transformer component. This can include settings specific to the vision encoder, such as input resolution or other vision-related parameters. If not provided, default settings will be used. |
None
|
text_model
|
Optional[RBLNModelConfig]
|
Configuration for the text model component. This can include settings specific to the language model, such as tensor parallelism or other text-related parameters. If not provided, default settings will be used. |
None
|
kwargs
|
Any
|
Additional arguments passed to the parent |
{}
|
Raises:
Type | Description |
---|---|
ValueError
|
If |
load(path, **kwargs)
classmethod
¶
Load a RBLNModelConfig from a path.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path
|
str
|
Path to the RBLNModelConfig file or directory containing the config file. |
required |
kwargs
|
Any
|
Additional keyword arguments to override configuration values. Keys starting with 'rbln_' will have the prefix removed and be used to update the configuration. |
{}
|
Returns:
Name | Type | Description |
---|---|---|
RBLNModelConfig |
RBLNModelConfig
|
The loaded configuration instance. |
Note
This method loads the configuration from the specified path and applies any provided overrides. If the loaded configuration class doesn't match the expected class, a warning will be logged.