콘텐츠로 이동

변분 오토인코더 (VAE)

변분 오토인코더(VAE)는 Stable Diffusion과 같은 확산 모델의 핵심 구성 요소로, 이미지를 잠재 공간으로 인코딩하고 잠재 표현을 다시 이미지로 디코딩하는 역할을 합니다. RBLN NPU는 Optimum RBLN을 사용하여 VAE 추론을 가속화할 수 있습니다.

확산 모델에서의 사용

Stable Diffusion과 같은 확산 기반 이미지 생성 모델에서 VAE는 두 가지 주요 기능을 수행합니다:

  1. 인코더: 이미지-이미지 변환이나 인페인팅과 같은 작업을 위해 입력 이미지를 잠재 표현으로 변환
  2. 디코더: 생성의 마지막 단계에서 노이즈가 제거된 잠재 표현을 다시 픽셀 공간으로 변환

API 참조

Classes

RBLNAutoencoderKL

Bases: RBLNModel

RBLN implementation of AutoencoderKL (VAE) for diffusion models.

This model is used to accelerate AutoencoderKL (VAE) models from diffusers library on RBLN NPUs. It can be configured to include both encoder and decoder, or just the decoder part for latent-to-image conversion.

This class inherits from [RBLNModel]. Check the superclass documentation for the generic methods the library implements for all its models.

Functions

from_model(model, config=None, rbln_config=None, model_save_dir=None, subfolder='', **kwargs) classmethod

Converts and compiles a pre-trained HuggingFace library model into a RBLN model. This method performs the actual model conversion and compilation process.

Parameters:

Name Type Description Default
model PreTrainedModel

The PyTorch model to be compiled. The object must be an instance of the HuggingFace transformers PreTrainedModel class.

required
config Optional[PretrainedConfig]

The configuration object associated with the model.

None
rbln_config Optional[Union[RBLNModelConfig, Dict]]

Configuration for RBLN model compilation and runtime. This can be provided as a dictionary or an instance of the model's configuration class (e.g., RBLNLlamaForCausalLMConfig for Llama models). For detailed configuration options, see the specific model's configuration class documentation.

None
kwargs Any

Additional keyword arguments. Arguments with the prefix rbln_ are passed to rbln_config, while the remaining arguments are passed to the HuggingFace library.

{}

The method performs the following steps:

  1. Compiles the PyTorch model into an optimized RBLN graph
  2. Configures the model for the specified NPU device
  3. Creates the necessary runtime objects if requested
  4. Saves the compiled model and configurations

Returns:

Type Description
RBLNModel

A RBLN model instance ready for inference on RBLN NPU devices.

encode(x, return_dict=True, **kwargs)

Encode an input image into a latent representation.

Parameters:

Name Type Description Default
x FloatTensor

The input image to encode.

required
return_dict bool

Whether to return output as a dictionary. Defaults to True.

True
kwargs Dict[str, Any]

Additional arguments to pass to the encoder.

{}

Returns:

Type Description
Union[FloatTensor, AutoencoderKLOutput]

The latent representation or AutoencoderKLOutput if return_dict=True

decode(z, return_dict=True, **kwargs)

Decode a latent representation into an image.

Parameters:

Name Type Description Default
z FloatTensor

The latent representation to decode.

required
return_dict bool

Whether to return output as a dictionary. Defaults to True.

True
kwargs Dict[str, Any]

Additional arguments to pass to the decoder.

{}

Returns:

Type Description
Union[FloatTensor, DecoderOutput]

The decoded image or DecoderOutput if return_dict=True

from_pretrained(model_id, export=None, rbln_config=None, **kwargs) classmethod

The from_pretrained() function is utilized in its standard form as in the HuggingFace transformers library. User can use this function to load a pre-trained model from the HuggingFace library and convert it to a RBLN model to be run on RBLN NPUs.

Parameters:

Name Type Description Default
model_id Union[str, Path]

The model id of the pre-trained model to be loaded. It can be downloaded from the HuggingFace model hub or a local path, or a model id of a compiled model using the RBLN Compiler.

required
export Optional[bool]

A boolean flag to indicate whether the model should be compiled. If None, it will be determined based on the existence of the compiled model files in the model_id.

None
rbln_config Optional[Union[Dict, RBLNModelConfig]]

Configuration for RBLN model compilation and runtime. This can be provided as a dictionary or an instance of the model's configuration class (e.g., RBLNLlamaForCausalLMConfig for Llama models). For detailed configuration options, see the specific model's configuration class documentation.

None
kwargs Any

Additional keyword arguments. Arguments with the prefix rbln_ are passed to rbln_config, while the remaining arguments are passed to the HuggingFace library.

{}

Returns:

Type Description
RBLNModel

A RBLN model instance ready for inference on RBLN NPU devices.

save_pretrained(save_directory, push_to_hub=False, **kwargs)

Saves a model and its configuration file to a directory, so that it can be re-loaded using the [~optimum.rbln.modeling_base.RBLNBaseModel.from_pretrained] class method.

Parameters:

Name Type Description Default
save_directory Union[str, Path]

Directory where to save the model file.

required
push_to_hub bool

Whether or not to push your model to the HuggingFace model hub after saving it.

False

Functions

Classes

RBLNAutoencoderKLConfig

Bases: RBLNModelConfig

Configuration class for RBLN Variational Autoencoder (VAE) models.

This class inherits from RBLNModelConfig and provides specific configuration options for VAE models used in diffusion-based image generation.

Functions

__init__(batch_size=None, sample_size=None, uses_encoder=None, vae_scale_factor=None, in_channels=None, latent_channels=None, **kwargs)

Parameters:

Name Type Description Default
batch_size Optional[int]

The batch size for inference. Defaults to 1.

None
sample_size Optional[Tuple[int, int]]

The spatial dimensions (height, width) of the input/output images. If an integer is provided, it's used for both height and width.

None
uses_encoder Optional[bool]

Whether to include the encoder part of the VAE in the model. When False, only the decoder is used (for latent-to-image conversion).

None
vae_scale_factor Optional[float]

The scaling factor between pixel space and latent space. Determines how much smaller the latent representations are compared to the original images.

None
in_channels Optional[int]

Number of input channels for the model.

None
latent_channels Optional[int]

Number of channels in the latent space.

None
kwargs Any

Additional arguments passed to the parent RBLNModelConfig.

{}

Raises:

Type Description
ValueError

If batch_size is not a positive integer.

load(path, **kwargs) classmethod

Load a RBLNModelConfig from a path.

Parameters:

Name Type Description Default
path str

Path to the RBLNModelConfig file or directory containing the config file.

required
kwargs Any

Additional keyword arguments to override configuration values. Keys starting with 'rbln_' will have the prefix removed and be used to update the configuration.

{}

Returns:

Name Type Description
RBLNModelConfig RBLNModelConfig

The loaded configuration instance.

Note

This method loads the configuration from the specified path and applies any provided overrides. If the loaded configuration class doesn't match the expected class, a warning will be logged.

Classes

RBLNAutoencoderKLCosmos

Bases: RBLNModel

RBLN implementation of AutoencoderKLCosmos for diffusion models.

This model is used to accelerate AutoencoderKLCosmos models from diffusers library on RBLN NPUs. It can be configured to include both encoder and decoder, or just the decoder part for latent-to-video conversion.

This class inherits from [RBLNModel]. Check the superclass documentation for the generic methods the library implements for all its models.

Functions

from_model(model, config=None, rbln_config=None, model_save_dir=None, subfolder='', **kwargs) classmethod

Converts and compiles a pre-trained HuggingFace library model into a RBLN model. This method performs the actual model conversion and compilation process.

Parameters:

Name Type Description Default
model PreTrainedModel

The PyTorch model to be compiled. The object must be an instance of the HuggingFace transformers PreTrainedModel class.

required
config Optional[PretrainedConfig]

The configuration object associated with the model.

None
rbln_config Optional[Union[RBLNModelConfig, Dict]]

Configuration for RBLN model compilation and runtime. This can be provided as a dictionary or an instance of the model's configuration class (e.g., RBLNLlamaForCausalLMConfig for Llama models). For detailed configuration options, see the specific model's configuration class documentation.

None
kwargs Any

Additional keyword arguments. Arguments with the prefix rbln_ are passed to rbln_config, while the remaining arguments are passed to the HuggingFace library.

{}

The method performs the following steps:

  1. Compiles the PyTorch model into an optimized RBLN graph
  2. Configures the model for the specified NPU device
  3. Creates the necessary runtime objects if requested
  4. Saves the compiled model and configurations

Returns:

Type Description
RBLNModel

A RBLN model instance ready for inference on RBLN NPU devices.

encode(x, return_dict=True, **kwargs)

Encode an input video into a latent representation.

Parameters:

Name Type Description Default
x FloatTensor

The input video to encode.

required
return_dict bool

Whether to return output as a dictionary. Defaults to True.

True
kwargs Dict[str, Any]

Additional arguments to pass to the encoder.

{}

Returns:

Type Description
Union[FloatTensor, AutoencoderKLOutput]

The latent representation or AutoencoderKLOutput if return_dict=True

decode(z, return_dict=True)

Decode a latent representation into a video.

Parameters:

Name Type Description Default
z FloatTensor

The latent representation to decode.

required
return_dict bool

Whether to return output as a dictionary. Defaults to True.

True

Returns:

Type Description
Union[FloatTensor, DecoderOutput]

The decoded video or DecoderOutput if return_dict=True

from_pretrained(model_id, export=None, rbln_config=None, **kwargs) classmethod

The from_pretrained() function is utilized in its standard form as in the HuggingFace transformers library. User can use this function to load a pre-trained model from the HuggingFace library and convert it to a RBLN model to be run on RBLN NPUs.

Parameters:

Name Type Description Default
model_id Union[str, Path]

The model id of the pre-trained model to be loaded. It can be downloaded from the HuggingFace model hub or a local path, or a model id of a compiled model using the RBLN Compiler.

required
export Optional[bool]

A boolean flag to indicate whether the model should be compiled. If None, it will be determined based on the existence of the compiled model files in the model_id.

None
rbln_config Optional[Union[Dict, RBLNModelConfig]]

Configuration for RBLN model compilation and runtime. This can be provided as a dictionary or an instance of the model's configuration class (e.g., RBLNLlamaForCausalLMConfig for Llama models). For detailed configuration options, see the specific model's configuration class documentation.

None
kwargs Any

Additional keyword arguments. Arguments with the prefix rbln_ are passed to rbln_config, while the remaining arguments are passed to the HuggingFace library.

{}

Returns:

Type Description
RBLNModel

A RBLN model instance ready for inference on RBLN NPU devices.

save_pretrained(save_directory, push_to_hub=False, **kwargs)

Saves a model and its configuration file to a directory, so that it can be re-loaded using the [~optimum.rbln.modeling_base.RBLNBaseModel.from_pretrained] class method.

Parameters:

Name Type Description Default
save_directory Union[str, Path]

Directory where to save the model file.

required
push_to_hub bool

Whether or not to push your model to the HuggingFace model hub after saving it.

False

Functions

Classes

RBLNAutoencoderKLCosmosConfig

Bases: RBLNModelConfig

Configuration class for RBLN Cosmos Variational Autoencoder (VAE) models.

Functions

__init__(batch_size=None, uses_encoder=None, num_frames=None, height=None, width=None, num_channels_latents=None, vae_scale_factor_temporal=None, vae_scale_factor_spatial=None, use_slicing=None, **kwargs)

Parameters:

Name Type Description Default
batch_size Optional[int]

The batch size for inference. Defaults to 1.

None
uses_encoder Optional[bool]

Whether to include the encoder part of the VAE in the model. When False, only the decoder is used (for latent-to-video conversion).

None
num_frames Optional[int]

The number of frames in the generated video. Defaults to 121.

None
height Optional[int]

The height in pixels of the generated video. Defaults to 704.

None
width Optional[int]

The width in pixels of the generated video. Defaults to 1280.

None
num_channels_latents Optional[int]

The number of channels in latent space.

None
vae_scale_factor_temporal Optional[int]

The scaling factor between time space and latent space. Determines how much shorter the latent representations are compared to the original videos.

None
vae_scale_factor_spatial Optional[int]

The scaling factor between pixel space and latent space. Determines how much smaller the latent representations are compared to the original videos.

None
use_slicing Optional[bool]

Enable sliced VAE encoding and decoding. If True, the VAE will split the input tensor in slices to compute encoding or decoding in several steps.

None
kwargs Dict[str, Any]

Additional arguments passed to the parent RBLNModelConfig.

{}

Raises:

Type Description
ValueError

If batch_size is not a positive integer.

load(path, **kwargs) classmethod

Load a RBLNModelConfig from a path.

Parameters:

Name Type Description Default
path str

Path to the RBLNModelConfig file or directory containing the config file.

required
kwargs Any

Additional keyword arguments to override configuration values. Keys starting with 'rbln_' will have the prefix removed and be used to update the configuration.

{}

Returns:

Name Type Description
RBLNModelConfig RBLNModelConfig

The loaded configuration instance.

Note

This method loads the configuration from the specified path and applies any provided overrides. If the loaded configuration class doesn't match the expected class, a warning will be logged.

Functions