콘텐츠로 이동

BART

BART (Bidirectional and Auto-Regressive Transformers)는 요약 및 번역과 같은 시퀀스-투-시퀀스 작업을 위해 설계된 트랜스포머 인코더-디코더 모델입니다. 텍스트 생성 작업의 성능을 향상시키기 위해 양방향(BERT와 같은) 및 자기회귀적(GPT와 같은) 사전 훈련을 결합합니다. RBLN NPU는 Optimum RBLN을 사용하여 BART 모델 추론을 가속화할 수 있습니다.

API 참조

Classes

RBLNBartModel

Bases: RBLNTransformerEncoderForFeatureExtraction

RBLN optimized BART model for feature extraction tasks.

This class provides hardware-accelerated inference for BART encoder models on RBLN devices, optimized for feature extraction use cases.

Functions

from_pretrained(model_id, export=None, rbln_config=None, **kwargs) classmethod

The from_pretrained() function is utilized in its standard form as in the HuggingFace transformers library. User can use this function to load a pre-trained model from the HuggingFace library and convert it to a RBLN model to be run on RBLN NPUs.

Parameters:

Name Type Description Default
model_id Union[str, Path]

The model id of the pre-trained model to be loaded. It can be downloaded from the HuggingFace model hub or a local path, or a model id of a compiled model using the RBLN Compiler.

required
export Optional[bool]

A boolean flag to indicate whether the model should be compiled. If None, it will be determined based on the existence of the compiled model files in the model_id.

None
rbln_config Optional[Union[Dict, RBLNModelConfig]]

Configuration for RBLN model compilation and runtime. This can be provided as a dictionary or an instance of the model's configuration class (e.g., RBLNLlamaForCausalLMConfig for Llama models). For detailed configuration options, see the specific model's configuration class documentation.

None
kwargs Any

Additional keyword arguments. Arguments with the prefix rbln_ are passed to rbln_config, while the remaining arguments are passed to the HuggingFace library.

{}

Returns:

Type Description
RBLNModel

A RBLN model instance ready for inference on RBLN NPU devices.

save_pretrained(save_directory, push_to_hub=False, **kwargs)

Saves a model and its configuration file to a directory, so that it can be re-loaded using the [~optimum.rbln.modeling_base.RBLNBaseModel.from_pretrained] class method.

Parameters:

Name Type Description Default
save_directory Union[str, Path]

Directory where to save the model file.

required
push_to_hub bool

Whether or not to push your model to the HuggingFace model hub after saving it.

False
from_model(model, config=None, rbln_config=None, model_save_dir=None, subfolder='', **kwargs) classmethod

Converts and compiles a pre-trained HuggingFace library model into a RBLN model. This method performs the actual model conversion and compilation process.

Parameters:

Name Type Description Default
model PreTrainedModel

The PyTorch model to be compiled. The object must be an instance of the HuggingFace transformers PreTrainedModel class.

required
config Optional[PretrainedConfig]

The configuration object associated with the model.

None
rbln_config Optional[Union[RBLNModelConfig, Dict]]

Configuration for RBLN model compilation and runtime. This can be provided as a dictionary or an instance of the model's configuration class (e.g., RBLNLlamaForCausalLMConfig for Llama models). For detailed configuration options, see the specific model's configuration class documentation.

None
kwargs Any

Additional keyword arguments. Arguments with the prefix rbln_ are passed to rbln_config, while the remaining arguments are passed to the HuggingFace library.

{}

The method performs the following steps:

  1. Compiles the PyTorch model into an optimized RBLN graph
  2. Configures the model for the specified NPU device
  3. Creates the necessary runtime objects if requested
  4. Saves the compiled model and configurations

Returns:

Type Description
RBLNModel

A RBLN model instance ready for inference on RBLN NPU devices.

RBLNBartForConditionalGeneration

Bases: RBLNModelForSeq2SeqLM

RBLN optimized BART model for conditional text generation tasks.

This class provides hardware-accelerated inference for BART models on RBLN devices, supporting sequence-to-sequence generation tasks such as summarization, translation, and text generation.

Functions

from_pretrained(model_id, export=None, rbln_config=None, **kwargs) classmethod

The from_pretrained() function is utilized in its standard form as in the HuggingFace transformers library. User can use this function to load a pre-trained model from the HuggingFace library and convert it to a RBLN model to be run on RBLN NPUs.

Parameters:

Name Type Description Default
model_id Union[str, Path]

The model id of the pre-trained model to be loaded. It can be downloaded from the HuggingFace model hub or a local path, or a model id of a compiled model using the RBLN Compiler.

required
export Optional[bool]

A boolean flag to indicate whether the model should be compiled. If None, it will be determined based on the existence of the compiled model files in the model_id.

None
rbln_config Optional[Union[Dict, RBLNModelConfig]]

Configuration for RBLN model compilation and runtime. This can be provided as a dictionary or an instance of the model's configuration class (e.g., RBLNLlamaForCausalLMConfig for Llama models). For detailed configuration options, see the specific model's configuration class documentation.

None
kwargs Any

Additional keyword arguments. Arguments with the prefix rbln_ are passed to rbln_config, while the remaining arguments are passed to the HuggingFace library.

{}

Returns:

Type Description
RBLNModel

A RBLN model instance ready for inference on RBLN NPU devices.

save_pretrained(save_directory, push_to_hub=False, **kwargs)

Saves a model and its configuration file to a directory, so that it can be re-loaded using the [~optimum.rbln.modeling_base.RBLNBaseModel.from_pretrained] class method.

Parameters:

Name Type Description Default
save_directory Union[str, Path]

Directory where to save the model file.

required
push_to_hub bool

Whether or not to push your model to the HuggingFace model hub after saving it.

False
from_model(model, config=None, rbln_config=None, model_save_dir=None, subfolder='', **kwargs) classmethod

Converts and compiles a pre-trained HuggingFace library model into a RBLN model. This method performs the actual model conversion and compilation process.

Parameters:

Name Type Description Default
model PreTrainedModel

The PyTorch model to be compiled. The object must be an instance of the HuggingFace transformers PreTrainedModel class.

required
config Optional[PretrainedConfig]

The configuration object associated with the model.

None
rbln_config Optional[Union[RBLNModelConfig, Dict]]

Configuration for RBLN model compilation and runtime. This can be provided as a dictionary or an instance of the model's configuration class (e.g., RBLNLlamaForCausalLMConfig for Llama models). For detailed configuration options, see the specific model's configuration class documentation.

None
kwargs Any

Additional keyword arguments. Arguments with the prefix rbln_ are passed to rbln_config, while the remaining arguments are passed to the HuggingFace library.

{}

The method performs the following steps:

  1. Compiles the PyTorch model into an optimized RBLN graph
  2. Configures the model for the specified NPU device
  3. Creates the necessary runtime objects if requested
  4. Saves the compiled model and configurations

Returns:

Type Description
RBLNModel

A RBLN model instance ready for inference on RBLN NPU devices.

Functions

Classes

RBLNBartModelConfig

Bases: RBLNTransformerEncoderForFeatureExtractionConfig

Configuration class for RBLNBartModel.

This configuration class stores the configuration parameters specific to RBLN-optimized BART models for feature extraction tasks.

Functions

__init__(max_seq_len=None, batch_size=None, model_input_names=None, model_input_shapes=None, **kwargs)

Parameters:

Name Type Description Default
max_seq_len Optional[int]

Maximum sequence length supported by the model.

None
batch_size Optional[int]

The batch size for inference. Defaults to 1.

None
model_input_names Optional[List[str]]

Names of the input tensors for the model. Defaults to class-specific rbln_model_input_names if not provided.

None
kwargs Any

Additional arguments passed to the parent RBLNModelConfig.

{}

Raises:

Type Description
ValueError

If batch_size is not a positive integer.

load(path, **kwargs) classmethod

Load a RBLNModelConfig from a path.

Parameters:

Name Type Description Default
path str

Path to the RBLNModelConfig file or directory containing the config file.

required
kwargs Any

Additional keyword arguments to override configuration values. Keys starting with 'rbln_' will have the prefix removed and be used to update the configuration.

{}

Returns:

Name Type Description
RBLNModelConfig RBLNModelConfig

The loaded configuration instance.

Note

This method loads the configuration from the specified path and applies any provided overrides. If the loaded configuration class doesn't match the expected class, a warning will be logged.

RBLNBartForConditionalGenerationConfig

Bases: RBLNModelForSeq2SeqLMConfig

Configuration class for RBLNBartForConditionalGeneration.

This configuration class stores the configuration parameters specific to RBLN-optimized BART models for conditional text generation tasks.

Functions

__init__(batch_size=None, enc_max_seq_len=None, dec_max_seq_len=None, use_attention_mask=None, pad_token_id=None, kvcache_num_blocks=None, kvcache_block_size=None, **kwargs)

Parameters:

Name Type Description Default
batch_size Optional[int]

The batch size for inference. Defaults to 1.

None
enc_max_seq_len Optional[int]

Maximum sequence length for the encoder.

None
dec_max_seq_len Optional[int]

Maximum sequence length for the decoder.

None
use_attention_mask Optional[bool]

Whether to use attention masks during inference.

None
pad_token_id Optional[int]

The ID of the padding token in the vocabulary.

None
kvcache_num_blocks Optional[int]

The total number of blocks to allocate for the PagedAttention KV cache for the SelfAttention. Defaults to batch_size.

None
kvcache_block_size Optional[int]

Sets the size (in number of tokens) of each block in the PagedAttention KV cache for the SelfAttention. Defaults to dec_max_seq_len.

None
kwargs Any

Additional arguments passed to the parent RBLNModelConfig.

{}

Raises:

Type Description
ValueError

If batch_size is not a positive integer.

load(path, **kwargs) classmethod

Load a RBLNModelConfig from a path.

Parameters:

Name Type Description Default
path str

Path to the RBLNModelConfig file or directory containing the config file.

required
kwargs Any

Additional keyword arguments to override configuration values. Keys starting with 'rbln_' will have the prefix removed and be used to update the configuration.

{}

Returns:

Name Type Description
RBLNModelConfig RBLNModelConfig

The loaded configuration instance.

Note

This method loads the configuration from the specified path and applies any provided overrides. If the loaded configuration class doesn't match the expected class, a warning will be logged.