Wav2Vec2ForCTC¶
Wav2Vec2는 음성 처리를 위한 자기지도 학습 모델입니다. Connectionist Temporal Classification (CTC)을 사용하여 가변 길이 오디오 입력을 텍스트 전사로 매핑합니다. 이 모델은 자동 음성 인식(ASR) 작업에 특히 효과적입니다. RBLN NPU는 Optimum RBLN을 사용하여 Wav2Vec2 모델 추론을 가속화할 수 있습니다.
API 참조¶
Classes¶
RBLNWav2Vec2ForCTC
¶
Bases: RBLNModel
Wav2Vec2 Model with a language modeling head on top for Connectionist Temporal Classification (CTC).
It implements the methods to convert a pre-trained Wav2Vec2 model into a RBLN Wav2Vec2 model by:
- transferring the checkpoint weights of the original into an optimized RBLN graph,
- compiling the resulting graph using the RBLN compiler.
Functions¶
forward(input_values, return_dict=None, **kwargs)
¶
Forward pass for the RBLN-optimized Wav2Vec2 model for Connectionist Temporal Classification (CTC).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
input_values
|
torch.FloatTensor of shape (batch_size, sequence_length)
|
Float values of input raw speech waveform. Values can be obtained by loading a .flac or .wav audio file into an array of type List[float] or a numpy.ndarray, e.g. via the soundfile library (pip install soundfile). To prepare the array into input_values, the AutoProcessor should be used for padding and conversion into a tensor of type torch.FloatTensor. |
required |
return_dict
|
bool
|
Whether or not to return a ModelOutput instead of a plain tuple. |
None
|
Returns:
| Type | Description |
|---|---|
Union[CausalLMOutput, tuple]
|
The model outputs. If return_dict=False is passed, returns a tuple of tensors. Otherwise, returns a CausalLMOutput object. |
from_model(model, config=None, rbln_config=None, model_save_dir=None, subfolder='', **kwargs)
classmethod
¶
Converts and compiles a pre-trained HuggingFace library model into a RBLN model. This method performs the actual model conversion and compilation process.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
model
|
PreTrainedModel
|
The PyTorch model to be compiled. The object must be an instance of the HuggingFace transformers PreTrainedModel class. |
required |
config
|
Optional[PretrainedConfig]
|
The configuration object associated with the model. |
None
|
rbln_config
|
Optional[Union[RBLNModelConfig, Dict]]
|
Configuration for RBLN model compilation and runtime.
This can be provided as a dictionary or an instance of the model's configuration class (e.g., |
None
|
kwargs
|
Any
|
Additional keyword arguments. Arguments with the prefix |
{}
|
The method performs the following steps:
- Compiles the PyTorch model into an optimized RBLN graph
- Configures the model for the specified NPU device
- Creates the necessary runtime objects if requested
- Saves the compiled model and configurations
Returns:
| Type | Description |
|---|---|
RBLNModel
|
A RBLN model instance ready for inference on RBLN NPU devices. |
from_pretrained(model_id, export=None, rbln_config=None, **kwargs)
classmethod
¶
The from_pretrained() function is utilized in its standard form as in the HuggingFace transformers library.
User can use this function to load a pre-trained model from the HuggingFace library and convert it to a RBLN model to be run on RBLN NPUs.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
model_id
|
Union[str, Path]
|
The model id of the pre-trained model to be loaded. It can be downloaded from the HuggingFace model hub or a local path, or a model id of a compiled model using the RBLN Compiler. |
required |
export
|
Optional[bool]
|
A boolean flag to indicate whether the model should be compiled. If None, it will be determined based on the existence of the compiled model files in the model_id. |
None
|
rbln_config
|
Optional[Union[Dict, RBLNModelConfig]]
|
Configuration for RBLN model compilation and runtime.
This can be provided as a dictionary or an instance of the model's configuration class (e.g., |
None
|
kwargs
|
Any
|
Additional keyword arguments. Arguments with the prefix |
{}
|
Returns:
| Type | Description |
|---|---|
RBLNModel
|
A RBLN model instance ready for inference on RBLN NPU devices. |
save_pretrained(save_directory, push_to_hub=False, **kwargs)
¶
Saves a model and its configuration file to a directory, so that it can be re-loaded using the
[~optimum.rbln.modeling_base.RBLNBaseModel.from_pretrained] class method.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
save_directory
|
Union[str, Path]
|
Directory where to save the model file. |
required |
push_to_hub
|
bool
|
Whether or not to push your model to the HuggingFace model hub after saving it. |
False
|
Classes¶
RBLNWav2Vec2ForCTCConfig
¶
Bases: RBLNModelConfig
Configuration class for RBLNWav2Vec2ForCTC.
This configuration class stores the configuration parameters specific to RBLN-optimized Wav2Vec2 models for Connectionist Temporal Classification (CTC) tasks.
Functions¶
load(path, **kwargs)
classmethod
¶
Load a RBLNModelConfig from a path.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
path
|
str
|
Path to the RBLNModelConfig file or directory containing the config file. |
required |
kwargs
|
Any
|
Additional keyword arguments to override configuration values. Keys starting with 'rbln_' will have the prefix removed and be used to update the configuration. |
{}
|
Returns:
| Name | Type | Description |
|---|---|---|
RBLNModelConfig |
RBLNModelConfig
|
The loaded configuration instance. |
Note
This method loads the configuration from the specified path and applies any provided overrides. If the loaded configuration class doesn't match the expected class, a warning will be logged.