Serving Large Language Model with Triton Inference Server
This tutorial describes how to serve one of the most famous large language models (LLMs), Llama2-7B
, using Triton Inference Server.
Serving with Triton Inference Server
Step 0. Clone python_backend
Clone python_backend of triton-inference-server as instructed in the step 1 of Nvidia Triton Inference Server.
| $ git clone https://github.com/triton-inference-server/python_backend -b r24.01
|
Step 1. Prepare the compiled Llama2-7B model
Place the compiled directory from the Llama2-7B tutorial into python_backend/examples/rbln/llama-2-7b-chat-hf/1
.
| $ mkdir -p python_backend/examples/rbln/llama-2-7b-chat-hf/1
$ cp -r rbln-Llama-2-7b-chat-hf python_backend/examples/rbln/llama-2-7b-chat-hf/1/
|
After you have finished the preparation step, your directory should look like the following:
| +--python_backend/
| +-- examples/
| | +-- rbln/
| | | +-- llama-2-7b-chat-hf/
| | | | +-- 1/
| | | | | +-- rbln-Llama-2-7b-chat-hf/
| | | | | | +-- compiled_model.rbln
| | | | | | +-- config.json
| | | | | | +-- (and others)
| | +-- (and others)
| +-- (and others)
|
Step 2. Write the Llama2-7B TritonPythonModel
First, create a file at python_backend/examples/rbln/llama-2-7b-chat-hf/config.pbtxt
and copy the following content to the new file. This file describes the input/output signature and some properties of the model.
config.pbtxt |
---|
| name: "llama-2-7b-chat-hf"
backend: "python"
input [ # (1)
{
name: "INPUT__0"
data_type: TYPE_STRING
dims: [ 1 ]
}
]
output [ # (2)
{
name: "OUTPUT__0"
data_type: TYPE_STRING
dims: [ 1 ]
}
]
instance_group [
{
count: 1
kind: KIND_MODEL
}
]
max_batch_size: 1
model_transaction_policy {
decoupled: True # (3)
}
|
- Describes the input signature of the model. It means that the model takes 1 input with name
INPUT__0
and its type should be a string.
- Describes the output signature of the model. It means that the model outputs 1 string with name
OUTPUT__0
.
model_transaction_policy.decoupled
should be set to True
to enable streaming inference.
Next, create a file at python_backend/examples/rbln/llama-2-7b-chat-hf/1/model.py
and copy the following script to the new file. This script runs the LLM model with static batching enabled. Also, it utilizes gRPC for client communication to enable decoupled model execution.
model.py |
---|
| # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import json
import os
import numpy as np
import triton_python_backend_utils as pb_utils
from optimum.rbln import BatchTextIteratorStreamer, RBLNLlamaForCausalLM
from transformers import AutoTokenizer
from threading import Thread
DEFAULT_PROMPT = "what is the first letter in alphabet?"
class TritonPythonModel:
def initialize(self, args):
"""`initialize` is called only once when the model is being loaded.
Parameters
----------
args : dict
Both keys and values are strings. The dictionary keys and values are:
* model_config: A JSON string containing the model configuration
* model_instance_kind: A string containing model instance kind
* model_instance_device_id: A string containing model instance device ID
* model_instance_name: A string containing model instance name in form of <model_name>_<instance_group_id>_<instance_id>
* model_repository: Model repository path
* model_version: Model version
* model_name: Model name
"""
self.model_config = model_config = json.loads(args["model_config"])
self.max_batch_size = model_config["max_batch_size"]
output0_config = pb_utils.get_output_config_by_name(model_config, "OUTPUT__0")
self.output0_dtype = pb_utils.triton_string_to_numpy(output0_config["data_type"])
model_dir = os.path.join(
args["model_repository"],
args["model_version"],
"rbln-Llama-2-7b-chat-hf",
)
self.model = RBLNLlamaForCausalLM.from_pretrained(
model_id=model_dir,
export=False,
)
self.tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf", pad_token="[PAD]", padding_side="left")
self.streamer = BatchTextIteratorStreamer(
tokenizer=self.tokenizer, batch_size=self.max_batch_size, skip_prompt=True, skip_special_tokens=True
)
def execute(self, requests):
"""`execute` MUST be implemented in every Python model. `execute`
function receives a list of pb_utils.InferenceRequest as the only
argument. This function is called when an inference request is made
for this model. Depending on the batching configuration (e.g. Dynamic
Batching) used, `requests` may contain multiple requests. Every
Python model, must create one pb_utils.InferenceResponse for every
pb_utils.InferenceRequest in `requests`. If there is an error, you can
set the error argument when creating a pb_utils.InferenceResponse
Parameters
----------
requests : list
A list of pb_utils.InferenceRequest
Returns
-------
list
A list of pb_utils.InferenceResponse. The length of this list must
be the same as `requests`
"""
inputs = []
num_requests = len(requests)
batch_sentences = [DEFAULT_PROMPT] * self.max_batch_size
for i in range(num_requests):
sentence = pb_utils.get_input_tensor_by_name(requests[i], "INPUT__0").as_numpy()[0][0]
sentence = str(sentence.decode("utf-8")).strip()
batch_sentences[i] = sentence
print(sentence)
output0_dtype = self.output0_dtype
inputs = self.tokenizer(batch_sentences, return_tensors="pt", padding=True)
generation_kwargs = dict(
**inputs,
streamer=self.streamer,
do_sample=False,
max_length=self.model.max_seq_len,
)
thread = Thread(target=self.model.generate, kwargs=generation_kwargs)
thread.start()
for new_text in self.streamer:
for i in range(num_requests):
out_data = np.array([new_text[i].encode("utf-8")])
out_tensor = pb_utils.Tensor("OUTPUT__0", out_data.astype(output0_dtype))
inference_response = pb_utils.InferenceResponse(output_tensors=[out_tensor])
response_sender = requests[i].get_response_sender()
response_sender.send(inference_response)
for i in range(num_requests):
response_sender = requests[i].get_response_sender()
out_data = np.array(["".encode("utf-8")])
out_tensor = pb_utils.Tensor("OUTPUT__0", out_data.astype(output0_dtype))
inference_response = pb_utils.InferenceResponse(output_tensors=[out_tensor])
response_sender.send(
inference_response,
flags=pb_utils.TRITONSERVER_RESPONSE_COMPLETE_FINAL,
)
return None
def finalize(self):
print("Cleaning up...")
|
If you have successfully completed the steps so far, you will have the following directory structure:
| +--python_backend/
| +-- examples/
| | +-- rbln/
| | | +-- llama-2-7b-chat-hf/
| | | | +-- config.pbtxt ============== (new file)
| | | | +-- 1/
| | | | | +-- model.py ============== (new file)
| | | | | +-- rbln-Llama-2-7b-chat-hf/
| | | | | | +-- compiled_model.rbln
| | | | | | +-- config.json
| | | | | | +-- (and others)
| | +-- (and others)
| +-- (and others)
|
Step 3. Run the inference server in the container
Follow Step 3 from the Triton Inference Server tutorial. Additionally, install optimum-rbln
inside the container:
| $ pip3 install -i https://pypi.rbln.ai/simple/ optimum-rbln
|
Step 4. Make an inference request via gRPC
In this section, we describe how to make inference requests using grpc client in python. The following client code requires tritonclient
and grpcio
packages to run. Run the following command to prepare all the required packages for running the scripts.
| $ pip3 install tritonclient==2.41.1 grpcio
|
The following script shows how to make an inference request.
simple_client.py |
---|
| import asyncio
import numpy as np
import tritonclient.grpc.aio as grpcclient
async def try_request():
url = "<host and port number of the triton inference server>" # e.g. "localhost:8001"
client = grpcclient.InferenceServerClient(url=url, verbose=False)
model_name = "llama-2-7b-chat-hf"
def create_request(prompt, request_id):
prompt_data = np.array([prompt.encode("utf-8")])
input = grpcclient.InferInput("INPUT__0", [1, 1], "BYTES")
input.set_data_from_numpy(prompt_data.reshape(1, 1))
inputs = [input]
output = grpcclient.InferRequestedOutput("OUTPUT__0")
outputs = [output]
return {
"model_name": model_name,
"inputs": inputs,
"outputs": outputs,
"request_id": request_id
}
prompt = "What is the first letter of English alphabets?"
async def requests_gen():
yield create_request(prompt, "req-0")
response_stream = client.stream_infer(requests_gen())
async for response in response_stream:
result, error = response
if error:
print("Error occurred!")
else:
output = result.as_numpy("OUTPUT__0")
for i in output:
print(i.decode("utf-8"), end="", flush=True)
asyncio.run(try_request())
|
Continuous Batching
To serve Large Language Models (LLMs) with maximum utilization, a popular serving optimization technique known as continuous batching is required.
LLM Serving with Continous Batching Enabled doc explains how to run the Llama2-7B
model with vLLM, which implements continuous batching.