Skip to content

Optimum RBLN

Optimum RBLN serves as a bridge connecting the HuggingFace transformers/diffusers libraries to RBLN NPUs, i.e. ATOM (RBLN-CA02) and ATOM+ (RBLN-CA12). It offers a set of tools that enable easy model compilation and inference for both single and multi-NPU (Rebellions Scalable Design) configurations across a range of downstream tasks. The following table presents the comprehensive lineup of models currently supported by Optimum RBLN.

Transformers

Single NPU

Model Dataset Task
Phi-2 250B tokens, combination of NLP synthetic data created by AIOAI GPT-3.5 Text Generation
Gemma-2b 6 trillion tokens of web, code, and mathematics text Text Generation
GPT2 WebText Text Generation
GPT2-medium WebText Text Generation
GPT2-large WebText Text Generation
GPT2-xl WebText Text Generation
T5-small Colossal Clean Crawled Corpus Text Generation
T5-base Colossal Clean Crawled Corpus Text Generation
T5-large Colossal Clean Crawled Corpus Text Generation
T5-3b Colossal Clean Crawled Corpus Text Generation
BART-base BookCorpus + etc. Text Generation
BART-large BookCorpus + etc. Text Generation
KoBART-base Korean Wiki Text Generation
E5-base-4K Colossal Clean text Pairs Embedding Retrieval
BERT-base - BookCorpus & English Wikipedia
- SQuAD v2
Masked Langague Modeling
BERT-large - BookCorpus & English Wikipedia
- SQuAD v2
Masked Langague Modeling
DistilBERT-base - BookCorpus & English Wikipedia
- SQuAD v2
Question Answering
SecureBERT a manually crafted dataset from the human readable descriptions of MITRE ATT&CK techniques and tactics Masked Langague Modeling
RoBERTa a manually crafted dataset from the human readable descriptions of MITRE ATT&CK techniques and tactics Text Classification
BGE-M3 MLDR and bge-m3-data Embedding Retrieval
BGE-Reranker-V2-M3 MLDR and bge-m3-data Embedding Retrieval
BGE-Reranker-Base MLDR and bge-m3-data Embedding Retrieval
BGE-Reranker-Large MLDR and bge-m3-data Embedding Retrieval
Whisper-tiny 680k hours of labeled data from the web Speech to Text
Whisper-base 680k hours of labeled data from the web Speech to Text
Whisper-small 680k hours of labeled data from the web Speech to Text
Whisper-medium 680k hours of labeled data from the web Speech to Text
Whisper-large-v3 680k hours of labeled data from the web Speech to Text
Whisper-large-v3-turbo 680k hours of labeled data from the web Speech to Text
Wav2Vec2 Librispeech Speech to Text
Audio-Spectogram-Transformer AudioSet Audio Classification
DPT-large MIX 6 Monocular Depth Estimation
ViT-large ImageNet-21k & ImageNet Image Classification
ResNet50 ILSVRC2012 Image Classification

Multi-NPU (RSD)

Note

Rebellions Scalable Design (RSD) is only available on ATOM+ (RBLN-CA12). You can check the type of your current RBLN NPU using the rbln-stat command.

Model Dataset Recommended # of NPUs Task
Llama3-8b A new mix of publicly available online data 4 Text Generation
Llama3-8b + LoRA fingpt-forecaster-dow30-202305-202405 4 Text Generation
Llama2-7b A new mix of publicly available online data 4 Text Generation
Llama2-13b A new mix of publicly available online data 8 Text Generation
Gemma-7b 6 trillion tokens of web, code, and mathematics text 4 Text Generation
Mistral-7b Publicly available online data 4 Text Generation
Qwen2-7b 7T tokens of internal data 4 Text Generation
Qwen2.5-7b 18T tokens of internal data 4 Text Generation
Qwen2.5-14b 18T tokens of internal data 8 Text Generation
Salamandra-7b 2.4T tokens of 35 European languages and 92 programming languages 4 Text Generation
EXAONE-3.0-7.8b 8T tokens of curated English and Korean data 4 Text Generation
EXAONE-3.5-2.4b 6.5T tokens of curated English and Korean data 4 Text Generation
EXAONE-3.5-7.8b 6.5T tokens of curated English and Korean data 8 Text Generation
Mi:dm-7b AI-HUB/the National Institute of Korean Language 4 Text Generation
SOLAR-10.7b alpaca-gpt4-data + etc. 8 Text Generation
EEVE-Korean-10.8b Korean-translated ver. of Open-Orca/SlimOrca-Dedup and argilla/ultrafeedback-binarized-preferences-cleaned 8 Text Generation
Llava-v1.6-mistral-7b - 4 Image Captioning

Diffusers

Note

Models marked with a superscript, , require more than one ATOM due to their large weight size exceeding the capacity of a single ATOM. This necessitates dividing the model's modules across multiple ATOMs. For detailed information regarding the specific module distribution, please refer to the model code.

Model Dataset Task
Stable Diffusion -
Stable Diffusion + LoRA - Text to Image
Stable Diffusion V3 -
Stable Diffusion XL -
Stable Diffusion XL + multi-LoRA - Text to Image
SDXL-turbo -
Stable Diffusion + ControlNet -
Stable Diffusion XL + ControlNet -