콘텐츠로 이동

TF Keras Applications EfficientNetB0

Overview

이 튜토리얼에서는 TF Keras Applications의 EfficientNetB0 모델을 RBLN Python API를 사용하여 컴파일하고 추론하는 방법을 보여줍니다.

Setup & Installation

시작하기 전에 시스템 환경이 올바르게 구성되어 있으며, 필요한 모든 필수 패키지가 설치되어 있는지 확인하십시오. 다음 항목이 포함됩니다:

Note

RBLN SDK는 .whl 패키지로 배포됩니다. RBLN 컴파일러와 런타임을 사용하려면 RBLN Portal 계정이 필요합니다.

RBLN Python API 사용

모델 컴파일

TF Keras Applications 모듈에서 EfficientNetB0를 임포트하고, 사전 학습된 가중치로 모델을 인스턴스화한 후 tf.function으로 변환합니다.
그 다음 RBLN 컴파일러로 모델을 컴파일하고 디스크에 저장합니다.

import tensorflow as tf  
from tf_keras.applications.efficientnet import EfficientNetB0  
import rebel  # RBLN Compiler  

# Instantiate TF Keras Applications EfficientNetB0 model  
model = EfficientNetB0(weights='imagenet')  
func = tf.function(lambda input_img: model(input_img))  

# Compile the model  
input_info = [('input_img', [1, 224, 224, 3], tf.float32)]  
compiled_model = rebel.compile_from_tf_function(  
    func,  
    input_info,  
)  

# Save the compiled model to disk  
compiled_model.save('efficientnetb0.rbln')  

모델 추론

EfficientNetB0에 필요한 입력 이미지를 다운로드하고 전처리합니다.
preprocess_input()을 사용해 적절히 전처리한 후, RBLN Runtime으로 컴파일된 모델을 로드하고 추론을 실행합니다.
decode_predictions()를 사용해 예측 결과를 디코딩하고 최상위 예측을 출력합니다.

import urllib.request  
from tf_keras.preprocessing import image  
from tf_keras.applications.efficientnet import preprocess_input, decode_predictions  
import numpy as np  

import rebel  # RBLN Runtime

# Prepare the input  
img_url = 'https://rbln-public.s3.ap-northeast-2.amazonaws.com/images/tabby.jpg'  
img_path = './tabby.jpg'  
with urllib.request.urlopen(img_url) as response, open(img_path, 'wb') as f:  
    f.write(response.read())  
img = image.load_img(img_path, target_size=(224, 224))  
x = image.img_to_array(img)  
x = np.expand_dims(x, axis=0)  
x = preprocess_input(x)  
x = np.ascontiguousarray(x)  

# Load the compiled model  
module = rebel.Runtime('efficientnetb0.rbln')  

# Run inference  
rebel_result = module.run(x)  

# Check results  
print('Top1 category:', decode_predictions(rebel_result, top=1)[0])  

결과는 다음과 같이 표시됩니다:

Top1 category: [('n02123045', 'tabby', 0.3798828)]

Summary and References

이 튜토리얼에서는 RBLN Python API를 사용하여 TF Keras Applications EfficientNetB0 모델을 컴파일하고 추론하는 방법을 보여주었습니다.
컴파일된 모델은 이미지 분류용으로 RBLN NPU에서 효율적으로 사용될 수 있습니다.

References: