콘텐츠로 이동

ResNet

ResNet (Residual Networks)은 매우 깊은 네트워크에서 기울기 소실 문제를 해결하기 위해 스킵 연결을 도입한 컨볼루션 신경망 아키텍처입니다. 이 모델은 이미지 분류 및 특징 추출 작업에 널리 사용됩니다. RBLN NPU는 Optimum RBLN을 사용하여 ResNet 모델 추론을 가속화할 수 있습니다.

주요 클래스

API 참조

Classes

RBLNResNetForImageClassification

Bases: RBLNModelForImageClassification

ResNet model for image classification tasks on RBLN NPU.

Functions

forward(pixel_values=None, return_dict=None, **kwargs)

Parameters:

Name Type Description Default
pixel_values Optional[FloatTensor]

Input pixel values.

None
return_dict bool

Whether or not to return a ModelOutput instead of a plain tuple.

None
**kwargs Dict[str, Any]

Additional arguments.

{}

Returns:

Type Description
Union[ImageClassifierOutput, FloatTensor]

Union[ImageClassifierOutput, FloatTensor]: The output of the model.

from_pretrained(model_id, export=False, rbln_config=None, **kwargs) classmethod

The from_pretrained() function is utilized in its standard form as in the HuggingFace transformers library. User can use this function to load a pre-trained model from the HuggingFace library and convert it to a RBLN model to be run on RBLN NPUs.

Parameters:

Name Type Description Default
model_id Union[str, Path]

The model id of the pre-trained model to be loaded. It can be downloaded from the HuggingFace model hub or a local path, or a model id of a compiled model using the RBLN Compiler.

required
export bool

A boolean flag to indicate whether the model should be compiled.

False
rbln_config Optional[Union[Dict, RBLNModelConfig]]

Configuration for RBLN model compilation and runtime. This can be provided as a dictionary or an instance of the model's configuration class (e.g., RBLNLlamaForCausalLMConfig for Llama models). For detailed configuration options, see the specific model's configuration class documentation.

None
kwargs Dict[str, Any]

Additional keyword arguments. Arguments with the prefix 'rbln_' are passed to rbln_config, while the remaining arguments are passed to the HuggingFace library.

{}

Returns:

Type Description
Self

A RBLN model instance ready for inference on RBLN NPU devices.

from_model(model, *, rbln_config=None, **kwargs) classmethod

Converts and compiles a pre-trained HuggingFace library model into a RBLN model. This method performs the actual model conversion and compilation process.

Parameters:

Name Type Description Default
model PreTrainedModel

The PyTorch model to be compiled. The object must be an instance of the HuggingFace transformers PreTrainedModel class.

required
rbln_config Optional[Union[Dict, RBLNModelConfig]]

Configuration for RBLN model compilation and runtime. This can be provided as a dictionary or an instance of the model's configuration class (e.g., RBLNLlamaForCausalLMConfig for Llama models). For detailed configuration options, see the specific model's configuration class documentation.

None
kwargs Dict[str, Any]

Additional keyword arguments. Arguments with the prefix 'rbln_' are passed to rbln_config, while the remaining arguments are passed to the HuggingFace library.

{}

The method performs the following steps:

  1. Compiles the PyTorch model into an optimized RBLN graph
  2. Configures the model for the specified NPU device
  3. Creates the necessary runtime objects if requested
  4. Saves the compiled model and configurations

Returns:

Type Description
Self

A RBLN model instance ready for inference on RBLN NPU devices.

save_pretrained(save_directory)

Saves a model and its configuration file to a directory, so that it can be re-loaded using the [from_pretrained] class method.

Parameters:

Name Type Description Default
save_directory Union[str, PathLike]

The directory to save the model and its configuration files. Will be created if it doesn't exist.

required

Classes

RBLNResNetForImageClassificationConfig

Bases: RBLNModelForImageClassificationConfig

Functions

__init__(image_size=None, batch_size=None, **kwargs)

Base configuration class for image models running on RBLN NPUs.

This class extends the RBLNModelConfig to include parameters specific to image models, such as image dimensions and batch sizes for inference.

Parameters:

Name Type Description Default
image_size Optional[Union[int, Tuple[int, int]]]

The size of input images. Can be an integer for square images or a tuple (height, width).

None
batch_size Optional[int]

The batch size for inference. Defaults to 1.

None
**kwargs Dict[str, Any]

Additional arguments passed to the parent RBLNModelConfig.

{}

Raises:

Type Description
ValueError

If batch_size is not a positive integer.